Quantitative risk analysis of offshore well blowout using bayesian network

海底 修井 海上钻井 海底管道 工程类 贝叶斯网络 海洋工程 井控 风险评估 石油工程 风险分析(工程) 钻探 可靠性工程 法律工程学 岩土工程 统计 计算机科学 机械工程 医学 数学 计算机安全
作者
Bangtang Yin,Boyao Li,Gang Liu,Zhiyuan Wang,Baojiang Sun
出处
期刊:Safety Science [Elsevier]
卷期号:135: 105080-105080 被引量:38
标识
DOI:10.1016/j.ssci.2020.105080
摘要

Blowout is the most feared and undesired accident during offshore drilling. It is inevitable, but the risk can be maintained to be below the acceptable criteria with effective strategies devised by risk analysis. An application of Bayesian networks (BN) for quantitative risk analysis on offshore blowouts was presented. First, we analyzed the SINTEF offshore well blowout data. 95% of blowout occurred in drilling, completion and workover during offshore drilling. Second, BN was applied to conduct risk analysis of offshore blowout. Based on these data, BN models were built. The prior probabilities with statistical probability method were calculated. The posterior probabilities during blowout were calculated using GeNIe software. The principal risk factors were identified by comparing them with prior probabilities. Shallow gas and abnormal high pressure were the principal risk factors of primary well control failure. Poor cementing and blowout preventer (BOP) failure were that of secondary well control failure. BOP failure is one of the main reason for blowout. Then, the risks of subsea and surface BOP failure were analyzed, combining with BN and Standardized Plant Analysis Risk Human Reliability Analysis Method. According to ExproSoft BOP failure data, the posterior probabilities with the concerning of component failure and human error were calculated. The principal factors were identified. This method provides greater value than the previous models since it can consider the complicated characteristics of geological condition, the whole offshore drilling, completion and workover technologies and operations, surface and subsea BOP common cause failures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多花基因完成签到,获得积分10
刚刚
无畏完成签到,获得积分10
1秒前
jialu发布了新的文献求助10
1秒前
jxas完成签到,获得积分10
1秒前
2秒前
搜集达人应助沈默然采纳,获得10
2秒前
海中有月完成签到 ,获得积分10
2秒前
jin发布了新的文献求助10
2秒前
王啸岳完成签到,获得积分10
2秒前
贪玩鸵鸟完成签到,获得积分10
3秒前
Da完成签到,获得积分10
3秒前
哈哈悦完成签到,获得积分10
3秒前
nn关闭了nn文献求助
3秒前
小旭vip完成签到 ,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
酷波er应助lezard采纳,获得10
4秒前
Stella应助Wangyingjie5采纳,获得10
4秒前
小鱼要变咸完成签到,获得积分10
4秒前
俭朴的寇完成签到,获得积分10
4秒前
杨潇丶丶完成签到,获得积分10
5秒前
Frank应助琳科研_文献采纳,获得10
5秒前
Zzz完成签到,获得积分10
5秒前
5秒前
grande完成签到,获得积分10
5秒前
Codd完成签到,获得积分10
5秒前
123123完成签到,获得积分10
6秒前
yvonne完成签到 ,获得积分10
6秒前
漂流的飞星完成签到,获得积分10
6秒前
6秒前
ZC完成签到,获得积分10
6秒前
刻苦的新烟完成签到 ,获得积分0
6秒前
忧心的寄松完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
肖承祥完成签到 ,获得积分10
8秒前
飞云之下完成签到,获得积分10
9秒前
azhu完成签到,获得积分10
9秒前
加减乘除发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977