已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantitative risk analysis of offshore well blowout using bayesian network

海底 修井 海上钻井 海底管道 工程类 贝叶斯网络 海洋工程 井控 风险评估 石油工程 风险分析(工程) 钻探 可靠性工程 法律工程学 岩土工程 统计 计算机科学 机械工程 医学 数学 计算机安全
作者
Bangtang Yin,Boyao Li,Gang Liu,Zhiyuan Wang,Baojiang Sun
出处
期刊:Safety Science [Elsevier]
卷期号:135: 105080-105080 被引量:38
标识
DOI:10.1016/j.ssci.2020.105080
摘要

Blowout is the most feared and undesired accident during offshore drilling. It is inevitable, but the risk can be maintained to be below the acceptable criteria with effective strategies devised by risk analysis. An application of Bayesian networks (BN) for quantitative risk analysis on offshore blowouts was presented. First, we analyzed the SINTEF offshore well blowout data. 95% of blowout occurred in drilling, completion and workover during offshore drilling. Second, BN was applied to conduct risk analysis of offshore blowout. Based on these data, BN models were built. The prior probabilities with statistical probability method were calculated. The posterior probabilities during blowout were calculated using GeNIe software. The principal risk factors were identified by comparing them with prior probabilities. Shallow gas and abnormal high pressure were the principal risk factors of primary well control failure. Poor cementing and blowout preventer (BOP) failure were that of secondary well control failure. BOP failure is one of the main reason for blowout. Then, the risks of subsea and surface BOP failure were analyzed, combining with BN and Standardized Plant Analysis Risk Human Reliability Analysis Method. According to ExproSoft BOP failure data, the posterior probabilities with the concerning of component failure and human error were calculated. The principal factors were identified. This method provides greater value than the previous models since it can consider the complicated characteristics of geological condition, the whole offshore drilling, completion and workover technologies and operations, surface and subsea BOP common cause failures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zennia发布了新的文献求助10
刚刚
小小元风完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
裘香芦发布了新的文献求助10
4秒前
李健的小迷弟应助七安采纳,获得10
6秒前
7秒前
7秒前
8秒前
12erf完成签到,获得积分10
9秒前
小刘医生发布了新的文献求助10
10秒前
12秒前
nn发布了新的文献求助10
13秒前
深情安青应助箴言Julius采纳,获得10
13秒前
张张发布了新的文献求助10
14秒前
16秒前
浮游应助麻瓜采纳,获得10
17秒前
浮游应助麻瓜采纳,获得10
17秒前
Ava应助1234采纳,获得10
19秒前
cx发布了新的文献求助10
19秒前
21秒前
嘿嘿应助喵喵采纳,获得10
21秒前
fly发布了新的文献求助10
21秒前
SciGPT应助文静修杰采纳,获得10
22秒前
22秒前
streamerz完成签到,获得积分10
23秒前
dadadada发布了新的文献求助10
24秒前
隐形曼青应助张张采纳,获得10
25秒前
25秒前
26秒前
Alex应助12erf采纳,获得10
26秒前
bkagyin应助我爱学习采纳,获得10
26秒前
仲秋二三应助HonestLiang采纳,获得10
27秒前
刘小蕊发布了新的文献求助20
28秒前
ggp完成签到,获得积分0
28秒前
共享精神应助ssss采纳,获得10
28秒前
今后应助dongdong采纳,获得10
28秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355792
求助须知:如何正确求助?哪些是违规求助? 4487641
关于积分的说明 13970761
捐赠科研通 4388399
什么是DOI,文献DOI怎么找? 2411058
邀请新用户注册赠送积分活动 1403632
关于科研通互助平台的介绍 1377189