亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

How Do Product Attributes and Reviews Moderate the Impact of Recommender Systems Through Purchase Stages?

推荐系统 计算机科学 Lift(数据挖掘) 显著性(神经科学) 产品(数学) 产品类别 情报检索 人工智能 机器学习 数学 几何学
作者
Dokyun Lee,Kartik Hosanagar
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (1): 524-546 被引量:72
标识
DOI:10.1287/mnsc.2019.3546
摘要

We investigate the moderating effect of product attributes and review ratings on views, conversion|views (conversion conditional on views), and final conversion of a purchase-based collaborative filtering recommender system on an e-commerce site. We run a randomized field experiment on a top retailer with 184,375 users split into a recommender-treated group and a control group. We tag theory-driven attributes of 37,125 unique products via Amazon Mechanical Turk to augment the usual product data (e.g., review ratings, descriptions). By examining the recommender’s impact through different stages—awareness (views), salience (conversion|views), and final conversion—and across product types, we provide nuanced insights. The study confirms that the recommender increases views, conversion|views, and final conversion rates by 15.3%, 21.6%, and 7.5%, respectively, but this lift is moderated by product attributes and review ratings. We find that the lift on product views is greater for utilitarian products compared with hedonic products as well as for experience products compared with search products. In contrast, the lift on conversion|views rate is greater for hedonic products compared with utilitarian products. Furthermore, the lift on views rate is greater for products with higher average review ratings, which suggests that a recommender acts as a complement to review ratings, whereas the opposite is true for conversion|views, where recommender and review ratings are substitutes. Additionally, a recommender’s awareness lift is greater than its saliency impact. We discuss the potential mechanisms behind our results as well as their managerial implications. This paper was accepted by David Simchi-Levi, information systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DL发布了新的文献求助10
1秒前
2秒前
ninomae完成签到 ,获得积分10
3秒前
4秒前
18秒前
crazydick发布了新的文献求助10
19秒前
lazysheep完成签到,获得积分10
24秒前
25秒前
shentaii完成签到,获得积分10
26秒前
28秒前
tq完成签到,获得积分10
29秒前
33秒前
43他发布了新的文献求助10
38秒前
1111111完成签到,获得积分10
40秒前
Orange应助科研通管家采纳,获得10
41秒前
胖胖猪完成签到,获得积分10
42秒前
46秒前
可爱的函函应助_ban采纳,获得10
55秒前
aromatherapy完成签到,获得积分10
58秒前
59秒前
1分钟前
1分钟前
GingerF完成签到,获得积分0
1分钟前
serendipity发布了新的文献求助10
1分钟前
AN应助Bin采纳,获得30
1分钟前
1分钟前
Jackey完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
pineapple发布了新的文献求助10
1分钟前
华仔应助满意的夜柳采纳,获得30
1分钟前
2分钟前
遥感小虫完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
我爱科研发布了新的文献求助10
2分钟前
Bin完成签到,获得积分10
2分钟前
慕青应助sbc采纳,获得10
2分钟前
回忆敌不过尿意完成签到,获得积分10
2分钟前
pineapple完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664136
求助须知:如何正确求助?哪些是违规求助? 4858127
关于积分的说明 15107210
捐赠科研通 4822602
什么是DOI,文献DOI怎么找? 2581577
邀请新用户注册赠送积分活动 1535787
关于科研通互助平台的介绍 1494017