How Do Product Attributes and Reviews Moderate the Impact of Recommender Systems Through Purchase Stages?

推荐系统 计算机科学 Lift(数据挖掘) 显著性(神经科学) 产品(数学) 产品类别 情报检索 人工智能 机器学习 数学 几何学
作者
Dokyun Lee,Kartik Hosanagar
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (1): 524-546 被引量:72
标识
DOI:10.1287/mnsc.2019.3546
摘要

We investigate the moderating effect of product attributes and review ratings on views, conversion|views (conversion conditional on views), and final conversion of a purchase-based collaborative filtering recommender system on an e-commerce site. We run a randomized field experiment on a top retailer with 184,375 users split into a recommender-treated group and a control group. We tag theory-driven attributes of 37,125 unique products via Amazon Mechanical Turk to augment the usual product data (e.g., review ratings, descriptions). By examining the recommender’s impact through different stages—awareness (views), salience (conversion|views), and final conversion—and across product types, we provide nuanced insights. The study confirms that the recommender increases views, conversion|views, and final conversion rates by 15.3%, 21.6%, and 7.5%, respectively, but this lift is moderated by product attributes and review ratings. We find that the lift on product views is greater for utilitarian products compared with hedonic products as well as for experience products compared with search products. In contrast, the lift on conversion|views rate is greater for hedonic products compared with utilitarian products. Furthermore, the lift on views rate is greater for products with higher average review ratings, which suggests that a recommender acts as a complement to review ratings, whereas the opposite is true for conversion|views, where recommender and review ratings are substitutes. Additionally, a recommender’s awareness lift is greater than its saliency impact. We discuss the potential mechanisms behind our results as well as their managerial implications. This paper was accepted by David Simchi-Levi, information systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
啊棕完成签到,获得积分10
1秒前
SciGPT应助Ttttt采纳,获得10
1秒前
2秒前
dudu完成签到,获得积分10
3秒前
4秒前
无极微光应助婷123采纳,获得20
5秒前
5秒前
多情的奄完成签到,获得积分10
5秒前
情怀应助小乙大夫采纳,获得10
5秒前
Jinnnnn发布了新的文献求助10
5秒前
满天星完成签到,获得积分10
6秒前
TingtingGZ发布了新的文献求助10
7秒前
清河聂氏发布了新的文献求助10
7秒前
pluto应助曾经曼梅采纳,获得10
7秒前
8秒前
丘比特应助自由的尔蓉采纳,获得10
8秒前
孙子豪完成签到,获得积分10
8秒前
9秒前
852应助Lchemistry采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
星辰大海应助动听的寻芹采纳,获得10
9秒前
10秒前
顾矜应助小佳同学采纳,获得10
10秒前
古灵井盖完成签到,获得积分10
10秒前
雄鹰般的女子完成签到,获得积分10
10秒前
11秒前
黄金城完成签到,获得积分10
11秒前
无敌大番茄完成签到,获得积分10
12秒前
轨迹应助BIRDY采纳,获得20
12秒前
文艺的从波完成签到,获得积分10
12秒前
姜姗发布了新的文献求助10
13秒前
机智猴完成签到,获得积分10
13秒前
wcx完成签到,获得积分10
14秒前
14秒前
cdx发布了新的文献求助20
14秒前
Davin完成签到,获得积分10
14秒前
标致夜雪完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006