Diminishing microbiome richness and distinction in the lower respiratory tract of lung cancer patients: A multiple comparative study design with independent validation

肺癌 医学 微生物群 内科学 肿瘤科 呼吸道 重症监护医学 物种丰富度 呼吸系统 生物信息学 生态学 生物
作者
Jing Jin,Yuncui Gan,Huayong Liu,Zirong Wang,Jianying Yuan,Taibing Deng,Yongzhao Zhou,Yingying Zhu,Hui Zhu,Yang Sai,Wei Shen,Dan Xie,Honglong Wu,Dan Liu,Weimin Li
出处
期刊:Lung Cancer [Elsevier]
卷期号:136: 129-135 被引量:68
标识
DOI:10.1016/j.lungcan.2019.08.022
摘要

Objectives Current evidence suggests that microorganisms are associated with neoplastic diseases; however, the role of the airway microbiome in lung cancer remains unknown. To investigate the taxonomic profiles of the lower respiratory tract (LRT) microbiome in patients with lung cancer. Materials and methods BALF samples were collected in a discovery set comprising 150 individuals, including 91 patients with lung cancer, 29 patients with nonmalignant pulmonary diseases and 30 healthy subjects, and an independent validation set including 85 participants. The samples were assessed by metagenomics analysis. Random forest regression analysis was performed to select a diagnostic panel. Results In the discovery set, richness was reduced in lung cancer patients compared with that in healthy subjects, and the microbiome of patients with nonmalignant diseases resembled that of patients with lung cancer. Interestingly, Bradyrhizobium japonicum was only found in patients with lung cancer, whereas Acidovorax was found in patients with cancer and nonmalignant pulmonary diseases. A microbiota-related diagnostic model consisting of age, pack year of smoking and eleven types of bacteria was built, and the area under the curve (AUC) for discriminating the patients with cancer was 0.882 (95%CI: 0.807-0.957) in the training set and 0.796 (95%CI: 0.673-0.920) in the independent validation set. Conclusion Our study demonstrates that the LRT microbiome richness is diminished in lung cancer patients compared with that in healthy subjects and that microbiota-specific biomarkers may be useful for diagnosing patients for whom lung biopsy is not feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻沅完成签到,获得积分10
刚刚
LILING完成签到,获得积分10
刚刚
123发布了新的文献求助10
1秒前
赖床艺术家完成签到,获得积分10
2秒前
领导范儿应助通~采纳,获得10
3秒前
端庄的黑米完成签到,获得积分10
3秒前
3秒前
领导范儿应助坤坤采纳,获得10
3秒前
4秒前
神勇的雅香应助司徒迎曼采纳,获得10
4秒前
4秒前
bkagyin应助椰子采纳,获得10
4秒前
Owen应助舒服的茹嫣采纳,获得10
4秒前
呼吸之野应助按住心动采纳,获得20
5秒前
5秒前
身为风帆发布了新的文献求助10
5秒前
changjiaren完成签到,获得积分10
5秒前
风中的怜阳完成签到,获得积分10
6秒前
自信号厂完成签到 ,获得积分10
6秒前
小蘑菇应助ccc采纳,获得10
7秒前
shuo完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
aich完成签到,获得积分10
8秒前
上官若男应助YE采纳,获得10
9秒前
Jasper应助YaoX采纳,获得10
9秒前
天天快乐应助威武绿真采纳,获得10
9秒前
MADKAI发布了新的文献求助10
9秒前
10秒前
慕青应助April采纳,获得10
10秒前
123完成签到,获得积分10
10秒前
Xu发布了新的文献求助10
10秒前
manan发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
张张完成签到,获得积分10
11秒前
Dream发布了新的文献求助30
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740