厚壁菌
酸杆菌
环境科学
蛋白质细菌
微生物种群生物学
生态系统
土壤水分
土壤有机质
生态学
生物
土壤科学
遗传学
16S核糖体RNA
细菌
作者
Manuel Esteban Lucas‐Borja,Isabel Miralles,Raúl Ortega,Pedro Antonio Plaza‐Álvarez,J. González-Romero,J. Sagra,Miguel Soriano,Giacomo Certini,Daniel Moya,Jorge de las Heras
标识
DOI:10.1016/j.scitotenv.2019.134033
摘要
Short-term fire-induced changes to the soil microbial community are usually closely associated to fire severity, which essentially consists in the fire-induced loss or decomposition of organic matter above ground and below ground. Many functional processes and soil properties, including plant recolonization and soil microorganism activity, depend on fire severity. Seven days after burning, we evaluated the impact of two fire severities (low and high) on basic soil properties and the microbial communities in an outdoor experimental controlled system composed of six forest soil monoliths. The magnitude of change in microbial community was far greater than the change in physical and chemical soil properties. Total N was the only selected soil property that significantly varied depending on fire severity. The severely burned soils experienced significant changes in overall microbial biomass composition and phylogenetic composition of bacterial communities in comparison with control plots. Immediately after the fire, in fact, phyla and genera such as Acidobacteria-Gp4 or Bacteroidetes-Ohtaekwangia were much more abundant in the control monoliths. On the other hand, Firmicutes or Proteobacteria (e.g. Firmicutes Paenibacillus, Proteobacteria Phenylobacterium) were relatively more abundant in the monoliths burned with high severity in comparison with the low severity burned ones. Overall, the effect of fire on soil microbial communities was greater in the high severity burned monoliths than in the low severity burned ones. We concluded that in Mediterranean forest ecosystems, fire significantly alters soil bacterial composition depending on its severity.
科研通智能强力驱动
Strongly Powered by AbleSci AI