Comparing Machine Learning Algorithms for Predicting Acute Kidney Injury

逻辑回归 生命体征 机器学习 医学 算法 急性肾损伤 人工智能 肌酐 急诊医学 统计 数学 内科学 计算机科学 外科
作者
Joshua Parreco,Hahn Soe-Lin,Jonathan Parks,Saskya Byerly,Matthew Chatoor,Jessica L. Buicko,Nicholas Namias,Rishi Rattan
出处
期刊:American Surgeon [SAGE Publishing]
卷期号:85 (7): 725-729 被引量:35
标识
DOI:10.1177/000313481908500731
摘要

Prior studies have used vital signs and laboratory measurements with conventional modeling techniques to predict acute kidney injury (AKI). The purpose of this study was to use the trend in vital signs and laboratory measurements with machine learning algorithms for predicting AKI in ICU patients. The eICU Collaborative Research Database was queried for five consecutive days of laboratory measurements per patient. Patients with AKI were identified and trends in vital signs and laboratory values were determined by calculating the slope of the least-squares-fit linear equation using three days for each value. Different machine learning classifiers (gradient boosted trees [GBT], logistic regression, and deep learning) were trained to predict AKI using the laboratory values, vital signs, and slopes. There were 151,098 ICU stays identified and the rate of AKI was 5.6 per cent. The best performing algorithm was GBT with an AUC of 0.834 ± 0.006 and an F-measure of 42.96 per cent ± 1.26 per cent. Logistic regression performed with an AUC of 0.827 ± 0.004 and an F-measure of 28.29 per cent ± 1.01 per cent. Deep learning performed with an AUC of 0.817 ± 0.005 and an F-measure of 42.89 per cent ± 0.91 per cent. The most important variable for GBT was the slope of the minimum creatinine (30.32%). This study identifies the best performing machine learning algorithms for predicting AKI using trends in laboratory values in ICU patients. Early identification of these patients using readily available data indicates that incorporating machine learning predictive models into electronic medical record systems is an inevitable requisite for improving patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
机灵人雄发布了新的文献求助10
1秒前
Mohr关注了科研通微信公众号
1秒前
斯文败类应助wu采纳,获得10
1秒前
赘婿应助钻石棋采纳,获得10
1秒前
1秒前
2秒前
天天快乐应助666ll采纳,获得10
2秒前
慕青应助曾曾采纳,获得10
2秒前
所所应助涛1采纳,获得10
2秒前
3秒前
Kan发布了新的文献求助10
3秒前
白羽发布了新的文献求助10
4秒前
Sajid发布了新的文献求助10
4秒前
卡卡卡西西完成签到,获得积分10
4秒前
Zx_1993应助YUZ采纳,获得50
4秒前
通行证完成签到,获得积分10
4秒前
鳗鱼中心完成签到,获得积分10
5秒前
挖井的人发布了新的文献求助10
5秒前
159发布了新的文献求助10
6秒前
啦啦啦发布了新的文献求助10
6秒前
墩墩完成签到,获得积分10
7秒前
小蘑菇应助Bgeelyu采纳,获得20
7秒前
红领巾发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
米里迷路完成签到,获得积分10
10秒前
10秒前
10秒前
18岁的王教授完成签到,获得积分10
11秒前
12秒前
无花果应助大意的怀柔采纳,获得10
12秒前
12秒前
Gin发布了新的文献求助10
12秒前
12秒前
白羽完成签到,获得积分10
12秒前
Akim应助拒绝去偏旁采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258146
求助须知:如何正确求助?哪些是违规求助? 4420085
关于积分的说明 13759156
捐赠科研通 4293598
什么是DOI,文献DOI怎么找? 2356080
邀请新用户注册赠送积分活动 1352449
关于科研通互助平台的介绍 1313237