Comparing Machine Learning Algorithms for Predicting Acute Kidney Injury

逻辑回归 生命体征 机器学习 医学 算法 急性肾损伤 人工智能 肌酐 急诊医学 统计 数学 内科学 计算机科学 外科
作者
Joshua Parreco,Hahn Soe-Lin,Jonathan Parks,Saskya Byerly,Matthew Chatoor,Jessica L. Buicko,Nicholas Namias,Rishi Rattan
出处
期刊:American Surgeon [SAGE]
卷期号:85 (7): 725-729 被引量:35
标识
DOI:10.1177/000313481908500731
摘要

Prior studies have used vital signs and laboratory measurements with conventional modeling techniques to predict acute kidney injury (AKI). The purpose of this study was to use the trend in vital signs and laboratory measurements with machine learning algorithms for predicting AKI in ICU patients. The eICU Collaborative Research Database was queried for five consecutive days of laboratory measurements per patient. Patients with AKI were identified and trends in vital signs and laboratory values were determined by calculating the slope of the least-squares-fit linear equation using three days for each value. Different machine learning classifiers (gradient boosted trees [GBT], logistic regression, and deep learning) were trained to predict AKI using the laboratory values, vital signs, and slopes. There were 151,098 ICU stays identified and the rate of AKI was 5.6 per cent. The best performing algorithm was GBT with an AUC of 0.834 ± 0.006 and an F-measure of 42.96 per cent ± 1.26 per cent. Logistic regression performed with an AUC of 0.827 ± 0.004 and an F-measure of 28.29 per cent ± 1.01 per cent. Deep learning performed with an AUC of 0.817 ± 0.005 and an F-measure of 42.89 per cent ± 0.91 per cent. The most important variable for GBT was the slope of the minimum creatinine (30.32%). This study identifies the best performing machine learning algorithms for predicting AKI using trends in laboratory values in ICU patients. Early identification of these patients using readily available data indicates that incorporating machine learning predictive models into electronic medical record systems is an inevitable requisite for improving patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助cookie采纳,获得10
1秒前
1秒前
斯文败类应助阳尧采纳,获得10
1秒前
2秒前
2秒前
abjz完成签到,获得积分10
2秒前
三千弱水为君饮完成签到,获得积分10
3秒前
3秒前
cata完成签到,获得积分10
3秒前
感谢79转发科研通微信,获得积分50
3秒前
3秒前
troubadourelf发布了新的文献求助10
4秒前
frank发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
感谢超帅冬易转发科研通微信,获得积分50
7秒前
7秒前
8秒前
8秒前
lixia完成签到 ,获得积分10
8秒前
8秒前
9秒前
在水一方应助jy采纳,获得10
9秒前
9秒前
Lucas完成签到,获得积分10
10秒前
10秒前
NorthWang发布了新的文献求助10
10秒前
薄哼哼完成签到,获得积分10
10秒前
troubadourelf完成签到,获得积分10
10秒前
科研小白菜完成签到,获得积分20
11秒前
淡定的思松应助12采纳,获得10
11秒前
lan发布了新的文献求助10
11秒前
韩金龙发布了新的文献求助10
12秒前
12秒前
小飞七应助红毛兔采纳,获得10
12秒前
小仙虎殿下完成签到 ,获得积分10
12秒前
Ethan完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794