Comparing Machine Learning Algorithms for Predicting Acute Kidney Injury

逻辑回归 生命体征 机器学习 医学 算法 急性肾损伤 人工智能 肌酐 急诊医学 统计 数学 内科学 计算机科学 外科
作者
Joshua Parreco,Hahn Soe-Lin,Jonathan Parks,Saskya Byerly,Matthew Chatoor,Jessica L. Buicko,Nicholas Namias,Rishi Rattan
出处
期刊:American Surgeon [SAGE Publishing]
卷期号:85 (7): 725-729 被引量:35
标识
DOI:10.1177/000313481908500731
摘要

Prior studies have used vital signs and laboratory measurements with conventional modeling techniques to predict acute kidney injury (AKI). The purpose of this study was to use the trend in vital signs and laboratory measurements with machine learning algorithms for predicting AKI in ICU patients. The eICU Collaborative Research Database was queried for five consecutive days of laboratory measurements per patient. Patients with AKI were identified and trends in vital signs and laboratory values were determined by calculating the slope of the least-squares-fit linear equation using three days for each value. Different machine learning classifiers (gradient boosted trees [GBT], logistic regression, and deep learning) were trained to predict AKI using the laboratory values, vital signs, and slopes. There were 151,098 ICU stays identified and the rate of AKI was 5.6 per cent. The best performing algorithm was GBT with an AUC of 0.834 ± 0.006 and an F-measure of 42.96 per cent ± 1.26 per cent. Logistic regression performed with an AUC of 0.827 ± 0.004 and an F-measure of 28.29 per cent ± 1.01 per cent. Deep learning performed with an AUC of 0.817 ± 0.005 and an F-measure of 42.89 per cent ± 0.91 per cent. The most important variable for GBT was the slope of the minimum creatinine (30.32%). This study identifies the best performing machine learning algorithms for predicting AKI using trends in laboratory values in ICU patients. Early identification of these patients using readily available data indicates that incorporating machine learning predictive models into electronic medical record systems is an inevitable requisite for improving patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xin完成签到,获得积分10
1秒前
1秒前
高挑的冰露完成签到 ,获得积分10
1秒前
2秒前
大个应助源于期待采纳,获得10
2秒前
风清扬发布了新的文献求助10
3秒前
杨榆藤发布了新的文献求助10
4秒前
4秒前
聪慧山柳完成签到,获得积分10
5秒前
5秒前
zsj发布了新的文献求助10
6秒前
6秒前
6秒前
顾矜应助给大佬递茶采纳,获得10
6秒前
7秒前
7秒前
CCY发布了新的文献求助10
7秒前
嘻鱼徐发布了新的文献求助10
7秒前
8秒前
8秒前
传奇3应助zz采纳,获得10
8秒前
星辰大海应助风清扬采纳,获得10
9秒前
酷酷丝完成签到,获得积分10
9秒前
锌小子发布了新的文献求助10
9秒前
10秒前
顾矜应助成功采纳,获得10
10秒前
11秒前
少年与梦发布了新的文献求助10
11秒前
ydx完成签到,获得积分10
11秒前
12秒前
唯梦发布了新的文献求助10
12秒前
Ava应助miya采纳,获得10
12秒前
小汐完成签到,获得积分10
13秒前
13秒前
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
yztz应助科研通管家采纳,获得10
13秒前
kk应助科研通管家采纳,获得10
14秒前
丰富的慕卉完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971997
求助须知:如何正确求助?哪些是违规求助? 3516489
关于积分的说明 11183123
捐赠科研通 3251764
什么是DOI,文献DOI怎么找? 1796106
邀请新用户注册赠送积分活动 876238
科研通“疑难数据库(出版商)”最低求助积分说明 805415