Prediction of dissolved oxygen concentration in aquatic systems based on transfer learning

学习迁移 均方误差 计算机科学 平均绝对百分比误差 人工智能 近似误差 机器学习 决定系数 人工神经网络 时间序列 训练集 深度学习 统计 数学 算法
作者
Nanyang Zhu,Xiang Ji,Jinglu Tan,Yongnian Jiang,Ya Guo
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:180: 105888-105888 被引量:17
标识
DOI:10.1016/j.compag.2020.105888
摘要

Prediction of dissolved oxygen (DO) concentration pattern is important for aquatic system management and environmental monitoring. The large amounts of experimental data needed often limit the ability to develop a reliable DO prediction model for a given aquatic system. In this research, deep learning and transfer learning techniques were applied to take advantage of a large available dataset for one aquatic system in predicting DO concentration trend in another (target) system for the first time. A pre-training DO prediction model incorporating deep learning algorithms of ResNets, BiLSTM, and Attention was established based on the large dataset. The knowledge obtained and retained by the pre-training model was then transferred to develop a DO prediction model for the target system with a much smaller amount of available data. To show the benefits of transfer learning, a DO prediction model of the same structure was developed for the target system with its own data without transfer learning from the first system. The root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R2), index of agreement (d), and Nash-Sutcliffe efficiency coefficient (NSE) were used to measure the performance of the models. The results showed that the model structure used was useful in learning and retaining knowledge from the first system. In terms of all performance measures, transfer learning improved DO time series prediction for the target aquatic system and allowed development of a prediction model for the target system without a large set of measured data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
肖承祥完成签到 ,获得积分10
1秒前
飞云之下完成签到,获得积分10
2秒前
azhu完成签到,获得积分10
2秒前
加减乘除发布了新的文献求助10
2秒前
标致的泥猴桃完成签到,获得积分10
2秒前
ZC发布了新的文献求助10
2秒前
桐桐应助好好采纳,获得10
3秒前
超人不会飞完成签到 ,获得积分10
3秒前
英姑应助柳絮采纳,获得10
4秒前
华仔应助sasa采纳,获得30
4秒前
若尘完成签到,获得积分10
4秒前
000200完成签到,获得积分10
4秒前
上官若男应助海藻酸采纳,获得10
4秒前
5秒前
飞云之下发布了新的文献求助10
5秒前
5秒前
小小威廉完成签到,获得积分10
5秒前
鱼饼完成签到 ,获得积分10
6秒前
yugy发布了新的文献求助30
6秒前
kysl完成签到,获得积分10
7秒前
7秒前
无限的板栗完成签到 ,获得积分10
7秒前
pophoo完成签到,获得积分10
7秒前
jia完成签到,获得积分10
7秒前
wanci应助神鸢采纳,获得10
7秒前
7秒前
clearlove完成签到,获得积分10
8秒前
於成协完成签到,获得积分10
8秒前
8秒前
Akim应助VV采纳,获得10
8秒前
小灰灰完成签到,获得积分10
8秒前
jstagey完成签到,获得积分10
9秒前
you发布了新的文献求助10
10秒前
昭昭昭昭发布了新的文献求助10
10秒前
小唐唐发布了新的文献求助10
10秒前
活力山蝶完成签到,获得积分10
10秒前
10秒前
kunkun完成签到,获得积分10
11秒前
Furina完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977