Prediction of dissolved oxygen concentration in aquatic systems based on transfer learning

学习迁移 均方误差 计算机科学 平均绝对百分比误差 人工智能 近似误差 机器学习 决定系数 人工神经网络 时间序列 训练集 深度学习 统计 数学 算法
作者
Nanyang Zhu,Xiang Ji,Jinglu Tan,Yongnian Jiang,Ya Guo
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:180: 105888-105888 被引量:17
标识
DOI:10.1016/j.compag.2020.105888
摘要

Prediction of dissolved oxygen (DO) concentration pattern is important for aquatic system management and environmental monitoring. The large amounts of experimental data needed often limit the ability to develop a reliable DO prediction model for a given aquatic system. In this research, deep learning and transfer learning techniques were applied to take advantage of a large available dataset for one aquatic system in predicting DO concentration trend in another (target) system for the first time. A pre-training DO prediction model incorporating deep learning algorithms of ResNets, BiLSTM, and Attention was established based on the large dataset. The knowledge obtained and retained by the pre-training model was then transferred to develop a DO prediction model for the target system with a much smaller amount of available data. To show the benefits of transfer learning, a DO prediction model of the same structure was developed for the target system with its own data without transfer learning from the first system. The root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R2), index of agreement (d), and Nash-Sutcliffe efficiency coefficient (NSE) were used to measure the performance of the models. The results showed that the model structure used was useful in learning and retaining knowledge from the first system. In terms of all performance measures, transfer learning improved DO time series prediction for the target aquatic system and allowed development of a prediction model for the target system without a large set of measured data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐水发布了新的文献求助10
刚刚
2秒前
2秒前
狂野的天薇关注了科研通微信公众号
2秒前
圆滑的铁勺完成签到,获得积分10
3秒前
3秒前
ssnha完成签到 ,获得积分10
6秒前
Dr W发布了新的文献求助20
6秒前
sx发布了新的文献求助10
8秒前
情怀应助嗷呜嗷呜采纳,获得30
10秒前
11秒前
Lucas应助故里采纳,获得10
13秒前
丘比特应助醉熏的井采纳,获得10
14秒前
sx完成签到,获得积分10
15秒前
SciGPT应助衬衣采纳,获得10
16秒前
Hello应助年年采纳,获得30
17秒前
18秒前
善学以致用应助肥肥采纳,获得10
19秒前
20秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
23秒前
乐乐应助科研通管家采纳,获得20
23秒前
慕青应助醉熏的井采纳,获得10
23秒前
橘子石榴应助科研通管家采纳,获得10
23秒前
24秒前
25秒前
26秒前
28秒前
JamesPei应助默默小鸽子采纳,获得10
29秒前
大模型应助陶弈衡采纳,获得10
30秒前
伶俐鹤轩发布了新的文献求助10
30秒前
故里发布了新的文献求助10
30秒前
Ava应助可抵岁月漫长采纳,获得10
32秒前
田様应助小绵羊的酸奶盖采纳,获得10
33秒前
36秒前
38秒前
我是老大应助醉熏的井采纳,获得10
38秒前
斯文败类应助勤劳海冬采纳,获得10
39秒前
Singularity应助Nature采纳,获得20
39秒前
42秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161014
求助须知:如何正确求助?哪些是违规求助? 2812392
关于积分的说明 7895364
捐赠科研通 2471232
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094