Comparative analysis on cross-modal information retrieval: A review

计算机科学 模态(人机交互) 情态动词 水准点(测量) 模式 人工智能 情报检索 领域(数学) 相似性(几何) 自然语言处理 图像(数学) 社会学 地理 纯数学 高分子化学 化学 社会科学 数学 大地测量学
作者
Parminder Kaur,Husanbir Singh Pannu,Avleen Malhi
出处
期刊:Computer Science Review [Elsevier]
卷期号:39: 100336-100336 被引量:56
标识
DOI:10.1016/j.cosrev.2020.100336
摘要

Human beings experience life through a spectrum of modes such as vision, taste, hearing, smell, and touch. These multiple modes are integrated for information processing in our brain using a complex network of neuron connections. Likewise for artificial intelligence to mimic the human way of learning and evolve into the next generation, it should elucidate multi-modal information fusion efficiently. Modality is a channel that conveys information about an object or an event such as image, text, video, and audio. A research problem is said to be multi-modal when it incorporates information from more than a single modality. Multi-modal systems involve one mode of data to be inquired for any (same or varying) modality outcome whereas cross-modal system strictly retrieves the information from a dissimilar modality. As the input–output queries belong to diverse modal families, their coherent comparison is still an open challenge with their primitive forms and subjective definition of content similarity. Numerous techniques have been proposed by researchers to handle this issue and to reduce the semantic gap of information retrieval among different modalities. This paper focuses on a comparative analysis of various research works in the field of cross-modal information retrieval. Comparative analysis of several cross-modal representations and the results of the state-of-the-art methods when applied on benchmark datasets have also been discussed. In the end, open issues are presented to enable the researchers to a better understanding of the present scenario and to identify future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luminous1123完成签到 ,获得积分10
刚刚
1秒前
1秒前
2秒前
2秒前
汉堡包应助小鱼鱼Fish采纳,获得10
2秒前
科研通AI40应助单薄的咖啡采纳,获得30
2秒前
3秒前
隐形曼青应助称心谷南采纳,获得10
3秒前
可靠猎豹完成签到,获得积分10
3秒前
3秒前
fbpuf完成签到,获得积分20
3秒前
大泥鳅完成签到,获得积分20
4秒前
科研通AI40应助FHY采纳,获得10
4秒前
zzyyy完成签到,获得积分10
4秒前
4秒前
白白发布了新的文献求助10
4秒前
神勇丹烟完成签到 ,获得积分10
5秒前
李爱国应助小林不熬夜采纳,获得10
5秒前
欢喜的酒窝完成签到,获得积分10
6秒前
XYHH发布了新的文献求助10
6秒前
英俊的铭应助tooty采纳,获得10
6秒前
赫连山菡应助tiddler采纳,获得10
6秒前
无花果应助今夜无人入眠采纳,获得10
6秒前
dungeon完成签到,获得积分10
6秒前
7秒前
7秒前
jiangzhixia发布了新的文献求助10
7秒前
zzyyy完成签到,获得积分10
7秒前
taozi完成签到,获得积分10
7秒前
7秒前
易安发布了新的文献求助10
8秒前
8秒前
23发布了新的文献求助20
8秒前
8秒前
9秒前
ZZJ完成签到,获得积分10
9秒前
9秒前
欢喜秋寒发布了新的文献求助10
10秒前
庄彧完成签到 ,获得积分10
10秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3472522
求助须知:如何正确求助?哪些是违规求助? 3065455
关于积分的说明 9093737
捐赠科研通 2756345
什么是DOI,文献DOI怎么找? 1512327
邀请新用户注册赠送积分活动 698850
科研通“疑难数据库(出版商)”最低求助积分说明 698632