数学
消散
纳维-斯托克斯方程组
分歧(语言学)
大地基准
理论(学习稳定性)
数学分析
订单(交换)
压缩性
物理
语言学
地图学
热力学
机器学习
计算机科学
哲学
经济
地理
财务
作者
Maria Colombo,Silja Haffter
标识
DOI:10.1016/j.jde.2020.11.006
摘要
We consider solutions of the Navier-Stokes equation with fractional dissipation of order α≥1. We show that for any divergence-free initial datum u0 such that ‖u0‖Hδ≤M, where M is arbitrarily large and δ is arbitrarily small, there exists an explicit ε=ε(M,δ)>0 such that the Navier-Stokes equations with fractional order α have a unique global smooth solution for α∈(54−ε,54]. This is related to a new stability result on smooth solutions of the Navier-Stokes equations with fractional dissipation showing that the set of initial data and fractional orders giving rise to smooth solutions is open in H5/4×(34,54].
科研通智能强力驱动
Strongly Powered by AbleSci AI