Prediction of tunnel boring machine operating parameters using various machine learning algorithms

机器学习 人工智能 人工神经网络 计算机科学 支持向量机 随机森林 算法 平滑的 梯度升压 卷积神经网络 计算机视觉
作者
Chen Xu,Xiaoli Liu,Enzhi Wang,Sijing Wang
出处
期刊:Tunnelling and Underground Space Technology [Elsevier BV]
卷期号:109: 103699-103699 被引量:67
标识
DOI:10.1016/j.tust.2020.103699
摘要

The operating parameters of a tunnel boring machine (TBM) reflect its geological conditions and working status and are accordingly critical data for ensuring safe and efficient tunnel construction. The accurate prediction of the advance rate, rotation speed, thrust, and torque indicators based on the operating parameters can guide the control and application of a TBM. In this study, we analyzed the relationships between the TBM operating parameters and daily collected TBM data. We used the smoothing method and outlier detection to process this data, and determined the stable values of four different TBM indicators in the ascending phase of a complete TBM operational segment. Then, we evaluated the application of five different statistical and ensemble machine learning methods (Bayesian ridge regression (BR), nearest neighbors regression, random forests, gradient tree boosting (GTB), and support vector machine) and two different deep neural networks (a convolutional neural network (CNN) and long short-term memory network (LSTM)) to establish prediction models. The GTB method provided the best prediction accuracy and the BR method provided the least calculation time of the five different statistical and ensemble machine learning methods evaluated. The LSTM method provided a higher prediction accuracy than the CNN model. The ensemble machine learning methods were found to be the most accurate for the relatively limited data sets used in this study, suggesting that sufficient data must be present before the advantages of deep neural networks can be truly realized. The successful application of statistical, ensemble, and deep neural network machine learning methods to predict TBM indicators in this study suggests the promise of machine learning in this application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pt-SACs完成签到,获得积分10
2秒前
小二郎应助夏侯无色采纳,获得10
2秒前
Sicily完成签到,获得积分10
6秒前
7秒前
默默碧空发布了新的文献求助10
8秒前
Song完成签到 ,获得积分10
11秒前
冷傲凝琴发布了新的文献求助10
13秒前
上官若男应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
wu8577应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
15秒前
李健应助科研通管家采纳,获得30
15秒前
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
15秒前
wu8577应助科研通管家采纳,获得10
15秒前
Akim应助欢喜的跳跳糖采纳,获得10
16秒前
17秒前
19秒前
英姑应助MRCHONG采纳,获得10
21秒前
XieMeina发布了新的文献求助30
22秒前
doudou完成签到,获得积分10
22秒前
玊尔发布了新的文献求助10
23秒前
博学为农发布了新的文献求助10
24秒前
Andyhacker完成签到,获得积分10
26秒前
小焦儿完成签到,获得积分10
31秒前
塔莉娅完成签到,获得积分10
32秒前
34秒前
烟花应助budingman采纳,获得20
35秒前
35秒前
36秒前
称心凡霜完成签到,获得积分10
37秒前
xiaoyao发布了新的文献求助30
38秒前
38秒前
38秒前
40秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382