Prediction of tunnel boring machine operating parameters using various machine learning algorithms

机器学习 人工智能 人工神经网络 计算机科学 支持向量机 随机森林 算法 平滑的 梯度升压 卷积神经网络 计算机视觉
作者
Chen Xu,Xiaoli Liu,Enzhi Wang,Sijing Wang
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:109: 103699-103699 被引量:67
标识
DOI:10.1016/j.tust.2020.103699
摘要

The operating parameters of a tunnel boring machine (TBM) reflect its geological conditions and working status and are accordingly critical data for ensuring safe and efficient tunnel construction. The accurate prediction of the advance rate, rotation speed, thrust, and torque indicators based on the operating parameters can guide the control and application of a TBM. In this study, we analyzed the relationships between the TBM operating parameters and daily collected TBM data. We used the smoothing method and outlier detection to process this data, and determined the stable values of four different TBM indicators in the ascending phase of a complete TBM operational segment. Then, we evaluated the application of five different statistical and ensemble machine learning methods (Bayesian ridge regression (BR), nearest neighbors regression, random forests, gradient tree boosting (GTB), and support vector machine) and two different deep neural networks (a convolutional neural network (CNN) and long short-term memory network (LSTM)) to establish prediction models. The GTB method provided the best prediction accuracy and the BR method provided the least calculation time of the five different statistical and ensemble machine learning methods evaluated. The LSTM method provided a higher prediction accuracy than the CNN model. The ensemble machine learning methods were found to be the most accurate for the relatively limited data sets used in this study, suggesting that sufficient data must be present before the advantages of deep neural networks can be truly realized. The successful application of statistical, ensemble, and deep neural network machine learning methods to predict TBM indicators in this study suggests the promise of machine learning in this application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HUangg完成签到,获得积分10
1秒前
YY完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
老猫头鹰完成签到,获得积分10
3秒前
3秒前
魁梧的海秋完成签到,获得积分10
4秒前
不想看文献完成签到,获得积分10
4秒前
4秒前
wwqc完成签到,获得积分0
4秒前
时尚雨兰完成签到,获得积分10
5秒前
蒙蒙发布了新的文献求助10
5秒前
慕青应助sunwei采纳,获得10
5秒前
CharlieYue完成签到,获得积分10
6秒前
张琨完成签到 ,获得积分10
8秒前
潘涵完成签到,获得积分10
9秒前
yuan完成签到,获得积分10
10秒前
无名完成签到,获得积分10
10秒前
11秒前
i羽翼深蓝i完成签到,获得积分10
11秒前
煮饭忘加米完成签到,获得积分10
11秒前
薛小飞飞完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
15秒前
闾丘博完成签到,获得积分10
15秒前
15秒前
15秒前
arniu2008发布了新的文献求助10
16秒前
科研通AI6应助蒙蒙采纳,获得10
16秒前
无极微光应助pp采纳,获得20
16秒前
wxp5294完成签到,获得积分10
19秒前
能干水蓝发布了新的文献求助10
19秒前
sunwei发布了新的文献求助10
20秒前
22秒前
zyyyyyu完成签到,获得积分10
22秒前
jianglili完成签到,获得积分10
23秒前
絮絮徐完成签到 ,获得积分10
25秒前
tingalan完成签到,获得积分0
25秒前
wang完成签到,获得积分10
25秒前
大个应助arniu2008采纳,获得10
25秒前
迷人的小土豆完成签到,获得积分10
26秒前
多肉丸子完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651555
求助须知:如何正确求助?哪些是违规求助? 4785100
关于积分的说明 15054111
捐赠科研通 4810151
什么是DOI,文献DOI怎么找? 2572990
邀请新用户注册赠送积分活动 1528919
关于科研通互助平台的介绍 1487917