Mechanism for tunable broadband white photoluminescence of one-dimensional (C4N2H14)2Pb1-xMnxBr4 perovskite microcrystals

光致发光 钙钛矿(结构) 材料科学 激子 兴奋剂 光电子学 化学 结晶学 物理 凝聚态物理
作者
Yalan Liu,Chao Wang,Chenyang Zhou,Peng Li,Li‐Na Zhu,Shuqing Sun,Xia Feng,Yan Sun,G. Zhao
出处
期刊:Journal of Luminescence [Elsevier]
卷期号:221: 117045-117045 被引量:18
标识
DOI:10.1016/j.jlumin.2020.117045
摘要

This work demonstrated that tunable photoluminescence of the low-dimensional hybrid halide perovskites via the doping strategy is feasible, and hence paves the way towards the investigation and application of high-performance single photoluminescence perovskite material with broadband white light emission. This work reported the first synthesis of one-dimensional (1D) (C4N2H14)2Pb1-xMnxBr4 perovskite microcrystals (MCs) with tunable broadband white-light emission and long-lived STE (self-trapped exciton) emission. The overall photoluminescence mechanism under the regulation of defect engineering of 1D (C4N2H14)2Pb1-xMnxBr4 MCs was formulated for the first time. Photoluminescence mechanism of these MCs involves competition of FE (free exciton) and STE and 4T1 states. This competitive mechanism further promotes photoluminescence tunability ranging from blue-white to white to orange-red for Mn-doped MCs. Moreover, time-resolved emission spectra show the changes of lifetime of these MCs at different emission wavelength. These perovskite MCs have a long-lived STE emission, which indicates that the more effective exciton combinations are occurring in them. For comparation, the Mn-doping strategy can regulate structural defect of these MCs, which promotes or suppresses transitions of FE→STE, FE→4T1, STE→FE and further tunes photoluminescence. This work paves the way towards the investigation and development of optoelectronic application of perovskite MCs material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
niu1发布了新的文献求助10
刚刚
Intro发布了新的文献求助10
刚刚
舒服的冬天完成签到,获得积分10
1秒前
Helical给Helical的求助进行了留言
1秒前
甜蜜晓绿完成签到,获得积分10
1秒前
2秒前
钱多多完成签到,获得积分10
2秒前
baekhyun完成签到,获得积分20
2秒前
2秒前
dpp发布了新的文献求助10
2秒前
今今完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
打打应助无情的白桃采纳,获得10
4秒前
香蕉觅云应助与光同晨采纳,获得10
5秒前
5秒前
小蘑菇应助clm采纳,获得10
5秒前
yhnsag完成签到,获得积分10
5秒前
Lin完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
7秒前
Rain发布了新的文献求助10
7秒前
butiflow完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
务实的唇膏完成签到,获得积分10
8秒前
Will完成签到,获得积分10
8秒前
8秒前
Micky完成签到,获得积分10
8秒前
ape发布了新的文献求助10
8秒前
十七发布了新的文献求助10
9秒前
gyt发布了新的文献求助10
9秒前
时尚战斗机完成签到,获得积分10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762