Novel patient-derived preclinical models of liver cancer

可药性 癌症 医学 恶性肿瘤 临床试验 肝癌 生物信息学 人口 鉴定(生物学) 肿瘤微环境 计算生物学 癌症研究 生物 病理 内科学 基因 环境卫生 植物 生物化学
作者
Erin Bresnahan,Pierluigi Ramadori,Mathias Heikenwälder,Lars Zender,Amaia Lujambio
出处
期刊:Journal of Hepatology [Elsevier]
卷期号:72 (2): 239-249 被引量:50
标识
DOI:10.1016/j.jhep.2019.09.028
摘要

Preclinical models of cancer based on the use of human cancer cell lines and mouse models have enabled discoveries that have been successfully translated into patients. And yet the majority of clinical trials fail, emphasising the urgent need to improve preclinical research to better interrogate the potential efficacy of each therapy and the patient population most likely to benefit. This is particularly important for liver malignancies, which lack highly efficient treatments and account for hundreds of thousands of deaths around the globe. Given the intricate network of genetic and environmental factors that contribute to liver cancer development and progression, the identification of new druggable targets will mainly depend on establishing preclinical models that mirror the complexity of features observed in patients. The development of new 3D cell culture systems, originating from cells/tissues isolated from patients, might create new opportunities for the generation of more specific and personalised therapies. However, these systems are unable to recapitulate the tumour microenvironment and interactions with the immune system, both proven to be critical influences on therapeutic outcomes. Patient-derived xenografts, in particular with humanised mouse models, more faithfully mimic the physiology of human liver cancer but are costly and time-consuming, which can be prohibitive for personalising therapies in the setting of an aggressive malignancy. In this review, we discuss the latest advances in the development of more accurate preclinical models to better understand liver cancer biology and identify paradigm-changing therapies, stressing the importance of a bi-directional communicative flow between clinicians and researchers to establish reliable model systems and determine how best to apply them to expanding our current knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gzxxx完成签到 ,获得积分10
1秒前
阔达的代曼完成签到,获得积分10
2秒前
安静海菡发布了新的文献求助10
2秒前
2秒前
x笑一完成签到,获得积分10
4秒前
王喂喂哦啊嗯完成签到,获得积分20
4秒前
昏睡的魂幽完成签到,获得积分10
5秒前
SciGPT应助一堃采纳,获得10
5秒前
5秒前
7秒前
8秒前
lizhi完成签到,获得积分10
9秒前
9秒前
左丘映易完成签到,获得积分0
9秒前
10秒前
鲸鱼发布了新的文献求助10
10秒前
啊我吗完成签到,获得积分10
11秒前
橘寄完成签到,获得积分20
11秒前
费乐巧完成签到,获得积分10
11秒前
13秒前
14秒前
14秒前
14秒前
15秒前
费乐巧发布了新的文献求助10
15秒前
深情安青应助naturehome采纳,获得10
16秒前
思源应助海底捞水果采纳,获得10
16秒前
17秒前
17秒前
18秒前
隐形的不正关注了科研通微信公众号
18秒前
19秒前
emma发布了新的文献求助10
19秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
998877剑指完成签到,获得积分10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155971
求助须知:如何正确求助?哪些是违规求助? 2807318
关于积分的说明 7872715
捐赠科研通 2465696
什么是DOI,文献DOI怎么找? 1312291
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905