地形
有效载荷(计算)
火星探测计划
遥感
计算机科学
航天器
全球定位系统
航空航天工程
火星探测
导航系统
实时计算
航空学
地质学
天体生物学
工程类
地理
地图学
电信
物理
网络数据包
计算机网络
作者
Chris Owens,Kori Macdonald,Jeremy Hardy,René Lindsay,Morgan Redfield,Michael Bloom,Erik S. Bailey,Yang Cheng,Daniel S. Clouse,Carlos Y. Villalpando,Ashot Hambardzumyan,Andrew Johnson,Andrew D. Horchler
出处
期刊:AIAA Scitech 2021 Forum
日期:2021-01-04
被引量:8
摘要
Astrobotic’s OPAL (Optical Precision Autonomous Landing) system, developed under public-private partnership, is a stand-alone, bolt-on commercial terrain relative navigation (TRN) sensor enabling pose estimation over a wide range of altitudes, off-nadir angles, and velocities. TRN enables spacecraft to land at more challenging sites through pinpoint landing and a priori hazard avoidance. OPAL builds on Astrobotic’s previous work on TRN sensor systems that have been deployed in suborbital rocket and helicopter field tests as well as JPL’s Lander Vision System (LVS) for Mars 2020. The OPAL system will fly aboard Astrobotic's Peregrine Mission One that will touch down near Lacus Mortis in 2021 as part of the first NASA Commercial Lunar Payload Services (CLPS) missions. OPAL’s signature-based TRN algorithms, simulation tools, and testing approach are overviewed.
科研通智能强力驱动
Strongly Powered by AbleSci AI