Identification of toxicity pathway of diesel particulate matter using AOP of PPARγ inactivation leading to pulmonary fibrosis

肺毒性 毒性 柴油机排气 微粒 不良结局途径 计算生物学 致癌物 化学 环境化学 生物 生物化学 柴油 有机化学
作者
Jaeseong Jeong,Su-Yong Bae,Jinhee Choi
出处
期刊:Environment International [Elsevier]
卷期号:147: 106339-106339 被引量:17
标识
DOI:10.1016/j.envint.2020.106339
摘要

Diesel particulate matter (DPM), a major subset of urban fine particulate matter (PM2.5), raises huge concerns for human health and has therefore been classified as a group 1 carcinogen by the International Agency for Research on Cancer (IARC). However, as DPM is a complex mixture of various chemicals, understanding of DPM's toxicity mechanism remains limited. As the major exposure route of DPM is through inhalation, we herein investigated its toxicity mechanism based on the Adverse Outcome Pathway (AOP) of pulmonary fibrosis, which we previously submitted to AOPWiki as AOP ID 206 (AOP206). We first screened whether individual chemicals in DPM have the potential to exert their toxicity through AOP206 by using the ToxCast database and deep learning models approach, then confirmed this by examining whether DPM as a mixture alters the expression of the molecular initiating event (MIE) and key events (KEs) of AOP206. For identifying the activeness of the component chemicals of DPM, we used 24 ToxCast assays potentially related to AOP206 and deep learning models based on these assays, which were identified and developed in our previous study. Of the 100 individual chemicals in DPM, 34 were active in PPARγ (MIE)-related assay, of which 17 were active in one or more KEs. To further identify whether individual chemicals in DPM are related to the MIE of AOP206, we performed molecular docking simulation on PPARγ for the chemicals showing activeness. Benzo[e]pyrene, benzo[a]pyrene and other related chemicals were the most likely to bind to PPARγ. In in vitro experiments, PPARγ activity increased with exposure of the DPM mixture, and the protein expression of PPARγ (MIE), and fibronectin (AO) also tended to be increased. Overall, we have demonstrated that AOP206 can be applied to identify the toxicity pathway of DPM. Further, we suggest that applying the AOP approach using ToxCast and deep learning models is useful for identifying potential toxicity pathways of chemical mixtures, such as DPM, by determining the activity of individual chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
杳鸢应助Theafter采纳,获得20
3秒前
哈哈哈发布了新的文献求助10
4秒前
一叶清尘完成签到,获得积分10
5秒前
5秒前
5秒前
顾矜应助山高鹭沅采纳,获得10
6秒前
泠风来完成签到,获得积分10
8秒前
8秒前
kkkkkk发布了新的文献求助30
9秒前
guangshuang发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助Sean采纳,获得10
11秒前
烟雨别离完成签到,获得积分10
13秒前
14秒前
函数完成签到 ,获得积分10
16秒前
rtx00发布了新的文献求助10
17秒前
废寝忘食完成签到,获得积分10
18秒前
21秒前
kkkkkk完成签到,获得积分10
24秒前
哈哈哈完成签到,获得积分10
24秒前
半夏发布了新的文献求助10
24秒前
刘佳敏完成签到 ,获得积分10
25秒前
香蕉觅云应助rtx00采纳,获得10
26秒前
27秒前
27秒前
27秒前
kuikichu完成签到,获得积分10
27秒前
研友_VZG7GZ应助冷傲的道罡采纳,获得10
29秒前
等等完成签到,获得积分10
30秒前
31秒前
32秒前
伪话痨家发布了新的文献求助10
32秒前
辛勤的嚣发布了新的文献求助10
34秒前
迷航完成签到 ,获得积分10
34秒前
volition发布了新的文献求助10
34秒前
乐乐关注了科研通微信公众号
35秒前
Jasper应助大力的无声采纳,获得10
35秒前
小琦无敌发布了新的文献求助10
37秒前
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316283
求助须知:如何正确求助?哪些是违规求助? 2948016
关于积分的说明 8538976
捐赠科研通 2624019
什么是DOI,文献DOI怎么找? 1435638
科研通“疑难数据库(出版商)”最低求助积分说明 665653
邀请新用户注册赠送积分活动 651512