Recurrent convolutional neural network: A new framework for remaining useful life prediction of machinery

计算机科学 卷积神经网络 人工智能 循环神经网络 机器学习 人工神经网络
作者
Biao Wang,Yaguo Lei,Tao Yan,Naipeng Li,Liang Guo
出处
期刊:Neurocomputing [Elsevier]
卷期号:379: 117-129 被引量:228
标识
DOI:10.1016/j.neucom.2019.10.064
摘要

Abstract Deep learning is becoming more appealing in remaining useful life (RUL) prediction of machines, because it is able to automatically build the mapping relationship between the raw data and the corresponding RUL by representation learning. Among deep learning models, convolutional neural networks (CNNs) are gaining special attention because of its powerful ability in dealing with time-series signals, and have achieved promising results in current studies. These studies, however, suffer from the two limitations: (1) The temporal dependencies of different degradation states are not considered during network construction; and (2) The uncertainty of RUL prediction results cannot be obtained. To overcome the above-mentioned limitations, a new framework named recurrent convolutional neural network (RCNN) is proposed in this paper for RUL prediction of machinery. In RCNN, recurrent convolutional layers are first constructed to model the temporal dependencies of different degradation states. Then, variational inference is used to quantify the uncertainty of RCNN in RUL prediction. The proposed RCNN is evaluated using vibration data from accelerated degradation tests of rolling element bearings and sensor data from life testing of milling cutters, and compared with some state-of-the-art prognostics approaches. Experimental results demonstrate the effectiveness and superiority of RCNN in improving the accuracy and convergence of RUL prediction. More importantly, RCNN is able to provide a probabilistic RUL prediction result, which breaks the inherent limitation of CNNs and facilitates maintenance decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助CMRwatermelon采纳,获得10
刚刚
2秒前
雨过天晴发布了新的文献求助20
2秒前
俊熙C发布了新的文献求助10
3秒前
jie发布了新的文献求助10
8秒前
11秒前
Jasper应助jie采纳,获得10
16秒前
CMRwatermelon发布了新的文献求助10
17秒前
阿囡湖给阿囡湖的求助进行了留言
18秒前
卷一口完成签到,获得积分10
21秒前
21秒前
雨过天晴发布了新的文献求助10
23秒前
今后应助BBQ采纳,获得10
27秒前
幸运星完成签到,获得积分10
29秒前
32秒前
LZQ应助老北京采纳,获得10
35秒前
选波发布了新的文献求助10
35秒前
35秒前
生动的若之完成签到 ,获得积分10
35秒前
CMRwatermelon完成签到,获得积分10
36秒前
清然完成签到,获得积分10
37秒前
37秒前
BBQ完成签到,获得积分10
38秒前
LYD完成签到,获得积分10
39秒前
40秒前
蜜桃小丸子完成签到 ,获得积分10
41秒前
BBQ发布了新的文献求助10
41秒前
慕青应助孔德平采纳,获得10
41秒前
彩虹完成签到,获得积分10
42秒前
liuyang1991发布了新的文献求助10
44秒前
可爱的函函应助彩虹采纳,获得10
45秒前
48秒前
51秒前
52秒前
52秒前
52秒前
bkagyin应助Zonghui_Liu采纳,获得10
53秒前
ldroc发布了新的文献求助30
53秒前
tao发布了新的文献求助20
54秒前
爆米花应助liuyang1991采纳,获得10
55秒前
高分求助中
Востребованный временем 2500
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
Eddy current canonical problems (with applications to nondestructive evaluation) 200
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372015
求助须知:如何正确求助?哪些是违规求助? 2989966
关于积分的说明 8737931
捐赠科研通 2673245
什么是DOI,文献DOI怎么找? 1464401
科研通“疑难数据库(出版商)”最低求助积分说明 677506
邀请新用户注册赠送积分活动 668880