Visual Inspection of the Aircraft Surface Using a Teleoperated Reconfigurable Climbing Robot and Enhanced Deep Learning Technique

遥操作 人工智能 污垢 机器人 计算机视觉 计算机科学 深度学习 过程(计算) 工程类 机械工程 操作系统
作者
Balakrishnan Ramalingam,Manuel Vega-Heredia,Mohan Rajesh Elara,Ayyalusami Vengadesh,Anirudh Krishna Lakshmanan,Muhammad Ilyas,Tan Jun Yuan James
出处
期刊:International Journal of Aerospace Engineering [Hindawi Limited]
卷期号:2019: 1-14 被引量:43
标识
DOI:10.1155/2019/5137139
摘要

Aircraft surface inspection includes detecting surface defects caused by corrosion and cracks and stains from the oil spill, grease, dirt sediments, etc. In the conventional aircraft surface inspection process, human visual inspection is performed which is time-consuming and inefficient whereas robots with onboard vision systems can inspect the aircraft skin safely, quickly, and accurately. This work proposes an aircraft surface defect and stain detection model using a reconfigurable climbing robot and an enhanced deep learning algorithm. A reconfigurable, teleoperated robot, named as “Kiropter,” is designed to capture the aircraft surface images with an onboard RGB camera. An enhanced SSD MobileNet framework is proposed for stain and defect detection from these images. A Self-filtering-based periodic pattern detection filter has been included in the SSD MobileNet deep learning framework to achieve the enhanced detection of the stains and defects on the aircraft skin images. The model has been tested with real aircraft surface images acquired from a Boeing 737 and a compact aircraft’s surface using the teleoperated robot. The experimental results prove that the enhanced SSD MobileNet framework achieves improved detection accuracy of aircraft surface defects and stains as compared to the conventional models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
milalala完成签到 ,获得积分10
刚刚
Ava应助司闻采纳,获得10
刚刚
刚刚
喵喵发布了新的文献求助10
1秒前
oy完成签到,获得积分10
1秒前
1秒前
1秒前
D&L发布了新的文献求助10
2秒前
芷莯完成签到,获得积分10
2秒前
3秒前
3秒前
Vicky完成签到,获得积分10
3秒前
刘鑫慧完成签到 ,获得积分10
3秒前
思源应助cloudup233采纳,获得10
3秒前
4秒前
xuegy11完成签到,获得积分10
4秒前
sandao发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
淡淡化蛹完成签到,获得积分10
7秒前
MRshenyy完成签到,获得积分10
7秒前
Akim应助子车半烟采纳,获得10
7秒前
公冶扬完成签到,获得积分10
8秒前
Silvia完成签到,获得积分10
9秒前
miamikk发布了新的文献求助10
9秒前
江脸脸发布了新的文献求助10
9秒前
Lny发布了新的文献求助10
9秒前
MG_aichy完成签到,获得积分10
9秒前
李亚莉完成签到,获得积分10
10秒前
思源应助喵喵采纳,获得10
10秒前
LXX不钻牛角尖完成签到,获得积分10
10秒前
小七完成签到,获得积分10
10秒前
韩XR发布了新的文献求助10
10秒前
10秒前
深情的紫寒完成签到,获得积分10
11秒前
海绵宝宝完成签到 ,获得积分10
11秒前
刘小姐完成签到,获得积分10
11秒前
max完成签到,获得积分10
12秒前
Airi完成签到,获得积分10
12秒前
orixero应助大树采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651771
求助须知:如何正确求助?哪些是违规求助? 4785921
关于积分的说明 15056130
捐赠科研通 4810446
什么是DOI,文献DOI怎么找? 2573185
邀请新用户注册赠送积分活动 1529071
关于科研通互助平台的介绍 1488014