Visual Inspection of the Aircraft Surface Using a Teleoperated Reconfigurable Climbing Robot and Enhanced Deep Learning Technique

遥操作 人工智能 污垢 机器人 计算机视觉 计算机科学 深度学习 过程(计算) 工程类 机械工程 操作系统
作者
Balakrishnan Ramalingam,Manuel Vega-Heredia,Mohan Rajesh Elara,Ayyalusami Vengadesh,Anirudh Krishna Lakshmanan,Muhammad Ilyas,Tan Jun Yuan James
出处
期刊:International Journal of Aerospace Engineering [Hindawi Publishing Corporation]
卷期号:2019: 1-14 被引量:43
标识
DOI:10.1155/2019/5137139
摘要

Aircraft surface inspection includes detecting surface defects caused by corrosion and cracks and stains from the oil spill, grease, dirt sediments, etc. In the conventional aircraft surface inspection process, human visual inspection is performed which is time-consuming and inefficient whereas robots with onboard vision systems can inspect the aircraft skin safely, quickly, and accurately. This work proposes an aircraft surface defect and stain detection model using a reconfigurable climbing robot and an enhanced deep learning algorithm. A reconfigurable, teleoperated robot, named as “Kiropter,” is designed to capture the aircraft surface images with an onboard RGB camera. An enhanced SSD MobileNet framework is proposed for stain and defect detection from these images. A Self-filtering-based periodic pattern detection filter has been included in the SSD MobileNet deep learning framework to achieve the enhanced detection of the stains and defects on the aircraft skin images. The model has been tested with real aircraft surface images acquired from a Boeing 737 and a compact aircraft’s surface using the teleoperated robot. The experimental results prove that the enhanced SSD MobileNet framework achieves improved detection accuracy of aircraft surface defects and stains as compared to the conventional models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Renn完成签到,获得积分10
刚刚
领导范儿应助HUA采纳,获得10
刚刚
符严青发布了新的文献求助10
刚刚
1秒前
头发很多发布了新的文献求助10
1秒前
1秒前
nian完成签到 ,获得积分10
1秒前
li发布了新的文献求助10
5秒前
wenni完成签到,获得积分10
6秒前
等光来完成签到,获得积分10
6秒前
无花果应助时尚俊驰采纳,获得10
7秒前
粗心的新之完成签到,获得积分10
7秒前
沉默的小天鹅应助Fonseca采纳,获得10
7秒前
cccui发布了新的文献求助10
7秒前
海豚有海完成签到 ,获得积分10
8秒前
哈温完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
916发布了新的文献求助50
10秒前
Unbelievable完成签到,获得积分10
10秒前
津津乐道完成签到,获得积分10
11秒前
yoyo完成签到 ,获得积分10
11秒前
11秒前
erhao完成签到,获得积分10
12秒前
龚幻梦发布了新的文献求助10
12秒前
13秒前
小花发布了新的文献求助10
13秒前
14秒前
三石发布了新的文献求助10
14秒前
生姜发布了新的文献求助10
15秒前
坛坛发布了新的文献求助10
15秒前
东皇太憨完成签到,获得积分10
15秒前
我是老大应助欢欢采纳,获得10
15秒前
Sunthief发布了新的文献求助30
16秒前
yusuf完成签到,获得积分10
16秒前
rookieLi应助kento采纳,获得30
16秒前
传奇3应助li采纳,获得10
16秒前
bluesky完成签到,获得积分10
17秒前
王平完成签到,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653