Enhancing credit scoring with alternative data

数据挖掘 人工智能 信用评级 机器学习
作者
Viani Biatat Djeundje,Jonathan Crook,Raffaella Calabrese,Mona Hamid
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:163: 113766- 被引量:15
标识
DOI:10.1016/j.eswa.2020.113766
摘要

Abstract Hundreds of millions of people in low-income economies do not have a credit or bank account because they have insufficient credit history for a credit score to be ascribed to them. In this paper we evaluate the predictive accuracy of models using alternative data, that may be used instead of credit history, to predict the credit risk of a new account. Without alternative data, the type of data that is typically available is demographic data. We show that a model that contains email usage and psychometric variables, as well as demographic variables, can give greater predictive accuracy than a model that uses demographic data only and that the predictive accuracy is sufficiently high for the demographic and email data to be used when conventional credit history data is unavailable. The same applies if merely psychometric data is included together with demographic data. However, we show that different randomly selected training: test sample splits give a wide range of predictive accuracies. In the second part of the paper, using two datasets that include only email usage as a predictor, we compare the predictive performances of a wide range of machine learning and statistical classifiers. We find that some classifiers applied to these alternative predictors give sufficiently accurate predictions for these variables to be used when no other data is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyun发布了新的文献求助30
刚刚
1秒前
飞翔的小鸟完成签到 ,获得积分10
1秒前
1秒前
笑看风云完成签到,获得积分10
2秒前
3秒前
error完成签到 ,获得积分10
4秒前
苏苏发布了新的文献求助10
4秒前
rose发布了新的文献求助30
4秒前
jou发布了新的文献求助10
4秒前
乐观小之应助夏傥采纳,获得10
6秒前
lzy完成签到,获得积分10
6秒前
6秒前
不倦应助超级无敌幸运星采纳,获得10
7秒前
故意不上钩的鱼应助小兵采纳,获得10
7秒前
小青椒应助Mesting采纳,获得30
7秒前
8秒前
8秒前
叮叮当当应助善良的发带采纳,获得20
8秒前
10秒前
10秒前
10秒前
Ava应助NGU采纳,获得10
10秒前
xiaopihaier完成签到,获得积分10
12秒前
13秒前
好久发布了新的文献求助10
13秒前
研友_VZG7GZ应助lijingyi采纳,获得10
13秒前
14秒前
机灵班应助zwk采纳,获得10
14秒前
shan完成签到,获得积分10
14秒前
Ava应助gtflbk采纳,获得10
14秒前
兔子发布了新的文献求助10
15秒前
不见高山完成签到,获得积分10
16秒前
18秒前
绵绵发布了新的文献求助10
18秒前
zyun完成签到,获得积分10
19秒前
务实的绮山完成签到,获得积分10
19秒前
20秒前
gjw应助呜呼啦呼采纳,获得10
20秒前
王王完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297298
求助须知:如何正确求助?哪些是违规求助? 4446207
关于积分的说明 13838799
捐赠科研通 4331371
什么是DOI,文献DOI怎么找? 2377578
邀请新用户注册赠送积分活动 1372834
关于科研通互助平台的介绍 1338403