Enhancing credit scoring with alternative data

数据挖掘 人工智能 信用评级 机器学习
作者
Viani Biatat Djeundje,Jonathan Crook,Raffaella Calabrese,Mona Hamid
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:163: 113766- 被引量:15
标识
DOI:10.1016/j.eswa.2020.113766
摘要

Abstract Hundreds of millions of people in low-income economies do not have a credit or bank account because they have insufficient credit history for a credit score to be ascribed to them. In this paper we evaluate the predictive accuracy of models using alternative data, that may be used instead of credit history, to predict the credit risk of a new account. Without alternative data, the type of data that is typically available is demographic data. We show that a model that contains email usage and psychometric variables, as well as demographic variables, can give greater predictive accuracy than a model that uses demographic data only and that the predictive accuracy is sufficiently high for the demographic and email data to be used when conventional credit history data is unavailable. The same applies if merely psychometric data is included together with demographic data. However, we show that different randomly selected training: test sample splits give a wide range of predictive accuracies. In the second part of the paper, using two datasets that include only email usage as a predictor, we compare the predictive performances of a wide range of machine learning and statistical classifiers. We find that some classifiers applied to these alternative predictors give sufficiently accurate predictions for these variables to be used when no other data is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RuiminXie发布了新的文献求助10
2秒前
3秒前
明理的喵完成签到,获得积分10
5秒前
6秒前
7秒前
ponytail发布了新的文献求助10
7秒前
kudoukoumei完成签到,获得积分10
8秒前
keyanwang完成签到 ,获得积分10
11秒前
12秒前
kudoukoumei发布了新的文献求助10
12秒前
悦耳白山发布了新的文献求助10
14秒前
suan发布了新的文献求助10
16秒前
辛夷坞发布了新的文献求助10
17秒前
小马甲应助Muttu采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
Henry应助文龙采纳,获得200
19秒前
敏敏敏呐发布了新的文献求助10
20秒前
20秒前
冷傲的无剑完成签到,获得积分10
23秒前
阳光向秋发布了新的文献求助10
24秒前
gfg达达发布了新的文献求助10
26秒前
我是老大应助微不足道采纳,获得10
26秒前
Jasper应助满意白卉采纳,获得10
27秒前
in完成签到,获得积分0
28秒前
JJ完成签到,获得积分10
28秒前
zxz完成签到,获得积分10
28秒前
zhang完成签到,获得积分10
30秒前
深情安青应助云上人采纳,获得10
32秒前
33秒前
互助遵法尚德应助deeferf采纳,获得10
34秒前
34秒前
37秒前
Niuma发布了新的文献求助10
37秒前
小东子发布了新的文献求助30
40秒前
43秒前
Muttu完成签到,获得积分20
44秒前
小东子完成签到,获得积分10
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138556
求助须知:如何正确求助?哪些是违规求助? 2789483
关于积分的说明 7791467
捐赠科研通 2445886
什么是DOI,文献DOI怎么找? 1300693
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079