Distance Oracle on Terrain Surface

甲骨文公司 计算机科学 范围查询(数据库) 查询优化 数据挖掘 地形 对象(语法) k-最近邻算法 空间查询 理论计算机科学 萨尔盖博 情报检索 人工智能 Web搜索查询 地理 地图学 搜索引擎 软件工程
作者
Victor Junqiu Wei,Raymond Chi-Wing Wong,Cheng Long,David M. Mount
标识
DOI:10.1145/3035918.3064038
摘要

Due to the advance of the geo-spatial positioning and the computer graphics technology, digital terrain data become more and more popular nowadays. Query processing on terrain data has attracted considerable attention from both the academic community and the industry community. One fundamental and important query is the shortest distance query and many other applications such as proximity queries (including nearest neighbor queries and range queries), 3D object feature vector construction and 3D object data mining are built based on the result of the shortest distance query. In this paper, we study the shortest distance query which is to find the shortest distance between a point-of-interest and another point-of-interest on the surface of the terrain due to a variety of applications. As observed by existing studies, computing the exact shortest distance is very expensive. Some existing studies proposed ε-approximate distance oracles where ε is a non-negative real number and is an error parameter. However, the best-known algorithm has a large oracle construction time, a large oracle size and a large distance query time. Motivated by this, we propose a novel ε-approximate distance oracle called the Space Efficient distance oracle (SE) which has a small oracle construction time, a small oracle size and a small distance query time due to its compactness storing concise information about pairwise distances between any two points-of-interest. Our experimental results show that the oracle construction time, the oracle size and the distance query time of SE are up to two orders of magnitude, up to 3 orders of magnitude and up to 5 orders of magnitude faster than the best-known algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助steiner采纳,获得10
刚刚
深情安青应助yukii采纳,获得10
刚刚
刚刚
lulu发布了新的文献求助10
刚刚
CipherSage应助谦让的含海采纳,获得10
1秒前
jiandan发布了新的文献求助10
2秒前
3秒前
3秒前
Accepted应助巴纳拉采纳,获得10
3秒前
玥来玥好发布了新的文献求助10
4秒前
4秒前
4秒前
情怀应助沉默的无施采纳,获得20
4秒前
可爱的函函应助。.。采纳,获得10
5秒前
赘婿应助常艳艳采纳,获得10
5秒前
6秒前
to高坚果发布了新的文献求助10
6秒前
先吃饭吧发布了新的文献求助20
6秒前
LLLLLLLL完成签到,获得积分10
6秒前
6秒前
Owen应助搞科研的小腻腻采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
hy发布了新的文献求助10
9秒前
干嘛鸭完成签到 ,获得积分10
9秒前
Hello应助廖同学采纳,获得10
9秒前
辉HUI发布了新的文献求助10
9秒前
CipherSage应助jiandan采纳,获得10
9秒前
小猪琪琪完成签到,获得积分10
9秒前
调研昵称发布了新的文献求助10
10秒前
wushang完成签到,获得积分10
10秒前
李健的小迷弟应助jason采纳,获得10
10秒前
晏子完成签到,获得积分10
11秒前
HOUR完成签到,获得积分10
11秒前
11秒前
11秒前
我是老大应助ls采纳,获得10
11秒前
Berberin发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
中国心血管健康与疾病报告2023(要完整的报告) 500
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3102053
求助须知:如何正确求助?哪些是违规求助? 2753346
关于积分的说明 7623434
捐赠科研通 2406027
什么是DOI,文献DOI怎么找? 1276521
科研通“疑难数据库(出版商)”最低求助积分说明 616877
版权声明 599103