Comparison of Cox Regression and Parametric Models: Application for Assessment of Survival of Pediatric Cases of Acute Leukemia in Southern Iran

比例危险模型 阿卡克信息准则 医学 回归分析 逻辑回归 统计 生存分析 回归 威布尔分布 内科学 数学
作者
Saeed Hosseini Teshnizi,Seyyed Mohammad Taghi Ayatollahi
出处
期刊:PubMed 卷期号:18 (4): 981-985 被引量:20
标识
DOI:10.22034/apjcp.2017.18.4.981
摘要

Background: Finding the most appropriate regression model for survival data in cancer casesin order to determine prognosis is an important issue in medical research. Here we compare Cox and parametric regression models regarding survival of children with acute leukemia in southern Iran. Methods: In a retrospective cohort study, information for 197 children with acute leukemia over 6 years was collected through observation and interviews. In order to identify factors affecting their survival, the Cox and parametric (exponential, Weibull, log-logistic, log-normal, Gompertz and generalized gamma) models were fitted to the data. To find the best predictor model, the Akaike’s information criterion (AIC) and the Coxsnell residual were employed. Results: Out of 197 children, 164 (83.3%) had ALL and 33 (16.7%) AML; the mean (± standard deviation) survival time was 52.1±8.10 months. According to both the AIC and the Coxsnell residual, the Cox regression model was the weakest and the log-normal and Weibull models were the best for fitting to data. Based on the log-normal model, age (HR=1.01, p=0.004), residence area (HR=1.60, p=0.038) and WBC (White Blood Cell) (HR=1.57, p=0.014) had significant effects on patient survival. Conclusion: Parametric regression models demonstrate better performance as compared to the Cox model for identifying risk factors for prognosis with acute leukemia data. Just because the assumption of PH (Proportional Hazards) is held for the Cox regression model, we should not ignore parameter models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老阳发布了新的文献求助10
刚刚
刚刚
每天完成签到,获得积分10
2秒前
yusovegoistt完成签到,获得积分10
3秒前
CodeCraft应助liu采纳,获得10
3秒前
4秒前
彭于晏应助今天也很从心采纳,获得10
4秒前
科研通AI2S应助777采纳,获得10
4秒前
LIO完成签到 ,获得积分10
5秒前
新闻联播完成签到 ,获得积分10
6秒前
W_G完成签到,获得积分10
7秒前
王月帆发布了新的文献求助10
7秒前
善学以致用应助金光闪闪采纳,获得10
7秒前
12秒前
12秒前
15秒前
CEJ发布了新的文献求助10
15秒前
lzzk完成签到,获得积分10
17秒前
liu发布了新的文献求助10
17秒前
坚强的紊发布了新的文献求助10
17秒前
领导范儿应助wwwww采纳,获得10
17秒前
星辰大海应助老阳采纳,获得10
21秒前
蓝西装舞王完成签到,获得积分10
24秒前
27秒前
坚强的紊完成签到,获得积分10
27秒前
28秒前
asdfghjkl完成签到,获得积分10
29秒前
30秒前
机智秋烟发布了新的文献求助10
31秒前
31秒前
31秒前
隐形曼青应助HUI采纳,获得10
31秒前
我是老大应助NXK采纳,获得10
32秒前
Zyl完成签到 ,获得积分10
32秒前
xpbaby发布了新的文献求助10
33秒前
老阳发布了新的文献求助10
33秒前
34秒前
SYLH应助超级凡桃采纳,获得10
34秒前
34秒前
科研通AI5应助贪玩平安采纳,获得10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738651
求助须知:如何正确求助?哪些是违规求助? 3282034
关于积分的说明 10027372
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645559
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975