Lake-area mapping in the Tibetan Plateau: an evaluation of data and methods

专题制图器 遥感 环境科学 中分辨率成像光谱仪 专题地图 光谱辐射计 高原(数学) 卫星图像 多光谱扫描仪 卫星 气候变化 自然地理学 地图学 地理 地质学 反射率 数学分析 航空航天工程 工程类 物理 光学 海洋学 数学
作者
Guoqing Zhang,Junli Li,Guoxiong Zheng
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:38 (3): 742-772 被引量:50
标识
DOI:10.1080/01431161.2016.1271478
摘要

Lake area derived from remote-sensing data is a primary data source, because changes in lake number and area are sensitive indicators of climate change. These indicators are especially useful when the climate change is not convoluted with a signal from direct anthropogenic activities. The data used for lake-area mapping is important, to avoid introducing unnecessary uncertainty into long-term trends of lake-area estimates. The methods for identifying waterbodies from satellite data are closely linked to the quality and efficiency of surface-water differentiation. However, few studies have comprehensively considered the factors affecting the selection of data and methods for mapping lake area in the Tibetan Plateau (TP), nor of evaluating their consequences. This study tests the dominant data sets (Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) data) and the methods for automated waterbody mapping on 14 large lakes (>500 km2) distributed across different climate zones of the TP. Seasonal changes in lake area and data availability from Landsat imagery are evaluated. Data obtained in October is optimal because in this month the lake area is relatively stable. The data window can be extended to September and November if insufficient data is available in October. Grouping data into three-year bins decreases the effects of year-to-year seasonal variability and provides a long-term trend that is suitable for time series analysis. The Landsat data (Multispectral Scanner, MSS; Thematic Mapper, TM; Enhanced Thematic Mapper Plus, ETM+; and Operational Land Imager, OLI) and MODIS data (MOD09A1) showed good performance for lake-area mapping. The Otsu method is used to determine the optimal threshold for distinguishing water from non-water features. Several water extraction indices, namely NDWIMcFeeters, NDWIXu, and AWEInon-shadow, yielded high overall classification accuracy (92%), kappa coefficient (0.83), and user’s accuracy (~90%) for lake-water classification using Landsat data. The MODIS data using NDWIMcFeeters and NDWIXu showed consistent lake area (r2 = 0.99) compared with Landsat data on the corresponding date with root mean square error (RMSE) values of 86.87 and 103.33 km2 and mean absolute error (MAE) values of 25.7 and 29.04 km2, respectively. The MODIS data is suitable for great lake mapping, which is the case for the large lakes in the TP. Although automated water extraction indices exhibited high accuracy in separating water from non-water, visual examination and manual editing are still necessary. Combined with recent Chinese high-resolution satellites, these remotely sensed imageries will provide a wealth of data for studies of lake dynamics and long-term lake evolution in the TP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
lmy完成签到 ,获得积分10
刚刚
平常的可乐完成签到 ,获得积分10
1秒前
1秒前
邵初蓝完成签到,获得积分10
2秒前
卡卡发布了新的文献求助10
3秒前
岳粤完成签到,获得积分10
3秒前
4秒前
大神发布了新的文献求助10
4秒前
4秒前
4秒前
xjtu发布了新的文献求助10
5秒前
雾见春发布了新的文献求助30
5秒前
姚文超完成签到,获得积分20
6秒前
科研小菜发布了新的文献求助10
6秒前
岳粤发布了新的文献求助10
6秒前
6秒前
6秒前
yijiubingshi发布了新的文献求助10
7秒前
7秒前
wang完成签到,获得积分10
8秒前
果酱君完成签到,获得积分10
8秒前
8秒前
9秒前
zzz发布了新的文献求助10
9秒前
kingwill应助江南烟雨如笙采纳,获得20
10秒前
10秒前
zrk发布了新的文献求助10
10秒前
小毕可乐完成签到,获得积分10
11秒前
zc19891130完成签到,获得积分10
11秒前
烟花应助晗仔采纳,获得10
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
小蘑菇应助zhui采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794