专题制图器
遥感
环境科学
中分辨率成像光谱仪
专题地图
光谱辐射计
高原(数学)
卫星图像
多光谱扫描仪
卫星
气候变化
自然地理学
地图学
地理
地质学
反射率
数学分析
航空航天工程
工程类
物理
光学
海洋学
数学
作者
Guoqing Zhang,Junli Li,Guoxiong Zheng
标识
DOI:10.1080/01431161.2016.1271478
摘要
Lake area derived from remote-sensing data is a primary data source, because changes in lake number and area are sensitive indicators of climate change. These indicators are especially useful when the climate change is not convoluted with a signal from direct anthropogenic activities. The data used for lake-area mapping is important, to avoid introducing unnecessary uncertainty into long-term trends of lake-area estimates. The methods for identifying waterbodies from satellite data are closely linked to the quality and efficiency of surface-water differentiation. However, few studies have comprehensively considered the factors affecting the selection of data and methods for mapping lake area in the Tibetan Plateau (TP), nor of evaluating their consequences. This study tests the dominant data sets (Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) data) and the methods for automated waterbody mapping on 14 large lakes (>500 km2) distributed across different climate zones of the TP. Seasonal changes in lake area and data availability from Landsat imagery are evaluated. Data obtained in October is optimal because in this month the lake area is relatively stable. The data window can be extended to September and November if insufficient data is available in October. Grouping data into three-year bins decreases the effects of year-to-year seasonal variability and provides a long-term trend that is suitable for time series analysis. The Landsat data (Multispectral Scanner, MSS; Thematic Mapper, TM; Enhanced Thematic Mapper Plus, ETM+; and Operational Land Imager, OLI) and MODIS data (MOD09A1) showed good performance for lake-area mapping. The Otsu method is used to determine the optimal threshold for distinguishing water from non-water features. Several water extraction indices, namely NDWIMcFeeters, NDWIXu, and AWEInon-shadow, yielded high overall classification accuracy (92%), kappa coefficient (0.83), and user’s accuracy (~90%) for lake-water classification using Landsat data. The MODIS data using NDWIMcFeeters and NDWIXu showed consistent lake area (r2 = 0.99) compared with Landsat data on the corresponding date with root mean square error (RMSE) values of 86.87 and 103.33 km2 and mean absolute error (MAE) values of 25.7 and 29.04 km2, respectively. The MODIS data is suitable for great lake mapping, which is the case for the large lakes in the TP. Although automated water extraction indices exhibited high accuracy in separating water from non-water, visual examination and manual editing are still necessary. Combined with recent Chinese high-resolution satellites, these remotely sensed imageries will provide a wealth of data for studies of lake dynamics and long-term lake evolution in the TP.
科研通智能强力驱动
Strongly Powered by AbleSci AI