亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring

计算机科学 梯度升压 Boosting(机器学习) 机器学习 决策树 人工智能 贝叶斯优化 随机森林 特征选择 超参数优化 数据挖掘 集合预报 特征(语言学) 贝叶斯概率 支持向量机 语言学 哲学
作者
Yufei Xia,Chuanzhe Liu,Yuying Li,Nana Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:78: 225-241 被引量:484
标识
DOI:10.1016/j.eswa.2017.02.017
摘要

Credit scoring is an effective tool for banks to properly guide decision profitably on granting loans. Ensemble methods, which according to their structures can be divided into parallel and sequential ensembles, have been recently developed in the credit scoring domain. These methods have proven their superiority in discriminating borrowers accurately. However, among the ensemble models, little consideration has been provided to the following: (1) highlighting the hyper-parameter tuning of base learner despite being critical to well-performed ensemble models; (2) building sequential models (i.e., boosting, as most have focused on developing the same or different algorithms in parallel); and (3) focusing on the comprehensibility of models. This paper aims to propose a sequential ensemble credit scoring model based on a variant of gradient boosting machine (i.e., extreme gradient boosting (XGBoost)). The model mainly comprises three steps. First, data pre-processing is employed to scale the data and handle missing values. Second, a model-based feature selection system based on the relative feature importance scores is utilized to remove redundant variables. Third, the hyper-parameters of XGBoost are adaptively tuned with Bayesian hyper-parameter optimization and used to train the model with selected feature subset. Several hyper-parameter optimization methods and baseline classifiers are considered as reference points in the experiment. Results demonstrate that Bayesian hyper-parameter optimization performs better than random search, grid search, and manual search. Moreover, the proposed model outperforms baseline models on average over four evaluation measures: accuracy, error rate, the area under the curve (AUC) H measure (AUC-H measure), and Brier score. The proposed model also provides feature importance scores and decision chart, which enhance the interpretability of credit scoring model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
归尘发布了新的文献求助30
17秒前
bellapp完成签到 ,获得积分10
32秒前
yznfly应助归尘采纳,获得20
34秒前
酷波er应助归尘采纳,获得10
34秒前
华仔应助归尘采纳,获得100
34秒前
CipherSage应助归尘采纳,获得10
34秒前
yydragen应助归尘采纳,获得30
39秒前
今后应助归尘采纳,获得10
39秒前
李爱国应助归尘采纳,获得10
39秒前
CodeCraft应助归尘采纳,获得10
39秒前
禾安应助归尘采纳,获得20
39秒前
完美世界应助归尘采纳,获得10
40秒前
Lucas应助归尘采纳,获得30
40秒前
汉堡包应助归尘采纳,获得10
40秒前
NexusExplorer应助归尘采纳,获得10
40秒前
英俊的铭应助归尘采纳,获得10
40秒前
Rondab应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
FashionBoy应助科研通管家采纳,获得10
41秒前
Rondab应助科研通管家采纳,获得10
41秒前
Rondab应助科研通管家采纳,获得10
41秒前
YifanWang应助科研通管家采纳,获得10
41秒前
YifanWang应助科研通管家采纳,获得10
41秒前
cc应助科研通管家采纳,获得10
41秒前
酷波er应助科研通管家采纳,获得10
41秒前
Rondab应助科研通管家采纳,获得10
41秒前
YifanWang应助科研通管家采纳,获得20
41秒前
Sandy应助科研通管家采纳,获得80
41秒前
传奇3应助科研通管家采纳,获得10
41秒前
半城微凉关注了科研通微信公众号
45秒前
FanFan应助归尘采纳,获得30
46秒前
情怀应助归尘采纳,获得10
46秒前
yar应助归尘采纳,获得10
46秒前
科研通AI2S应助归尘采纳,获得10
46秒前
英俊的铭应助归尘采纳,获得10
46秒前
星辰大海应助归尘采纳,获得10
46秒前
传奇3应助归尘采纳,获得30
47秒前
光影相生应助归尘采纳,获得10
47秒前
无花果应助归尘采纳,获得10
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960053
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128558
捐赠科研通 3238254
什么是DOI,文献DOI怎么找? 1789617
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056