Vision based inspection of transmission lines using unmanned aerial vehicles

电力传输 背景(考古学) 计算机科学 过程(计算) 任务(项目管理) 电力系统 动力传输 传输(电信) 功率(物理) 实时计算 人工智能 系统工程 工程类 电信 电气工程 生物 操作系统 物理 古生物学 量子力学
作者
Oswaldo Menéndez,Marcelo A. Pérez,Fernando Auat Cheein
标识
DOI:10.1109/mfi.2016.7849523
摘要

Power systems currently face several challenges in order to address the growing need for sustainable energy worldwide. In this context, nowadays several tasks either directly or indirectly related to power systems can be automated to guarantee their continuous operation. The surveillance and inspection of transmission lines represents a necessary task to meet the energy demands by the commercial and industrial customers. Since power-lines can be thought as hostile environments for humans it is thus necessary to develop new techniques to improve this process, to reduce costs, to improve response times and more important, to avoid operational risks. Although there has been an incipient development of robotic applications in several areas of power systems, it is still a technology under research and development, since it is highly dependent on the nature of the task to be performed and no unified framework of applications exists. This article aims to present the preliminary system for tracking transmission lines based on detection of wires through artificial vision. The system is mounted on a robotic arm, simulating an unmanned aerial vehicle (UAV) which uses the transmission lines detection to position itself. The same system will be used later to inspect the state of the transmission line with the aim of reporting such state and to offer corrective guidelines against damages or problems in the power system if necessary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eating发布了新的文献求助30
1秒前
幸福遥完成签到,获得积分10
3秒前
5秒前
金晓完成签到,获得积分20
5秒前
6秒前
英姑应助周卑微采纳,获得10
7秒前
8秒前
蜡笔不小鑫完成签到,获得积分10
8秒前
艾瑞克完成签到,获得积分10
8秒前
9秒前
bkagyin应助哈哈镜采纳,获得10
11秒前
11秒前
金晓发布了新的文献求助10
11秒前
sugar0831发布了新的文献求助10
12秒前
mmmmb完成签到,获得积分10
13秒前
Celine完成签到,获得积分10
13秒前
魔真人发布了新的文献求助10
14秒前
14秒前
绝世冰淇淋完成签到 ,获得积分10
14秒前
xiaoguan完成签到,获得积分10
15秒前
15秒前
ytrewq发布了新的文献求助10
18秒前
Carsen完成签到,获得积分10
19秒前
哈哈镜发布了新的文献求助10
21秒前
魔真人完成签到,获得积分10
21秒前
22秒前
小李找文献完成签到,获得积分10
22秒前
23秒前
26秒前
taotao发布了新的文献求助10
26秒前
28秒前
28秒前
烟花应助小呆毛采纳,获得10
29秒前
30秒前
香蕉觅云应助mmmmb采纳,获得30
31秒前
我是老大应助ATOM采纳,获得10
32秒前
LING完成签到,获得积分10
33秒前
Akim应助点点采纳,获得10
34秒前
AnnaTian发布了新的文献求助10
34秒前
爬不起来发布了新的文献求助10
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734558
求助须知:如何正确求助?哪些是违规求助? 3278480
关于积分的说明 10009777
捐赠科研通 2995112
什么是DOI,文献DOI怎么找? 1643222
邀请新用户注册赠送积分活动 781009
科研通“疑难数据库(出版商)”最低求助积分说明 749196