Detection of lung cancer in exhaled breath with an electronic nose using support vector machine analysis

医学 肺癌 慢性阻塞性肺病 内科学 癌症 气体分析呼吸 阶段(地层学) 胃肠病学 肿瘤科 生物 解剖 古生物学
作者
Madara Tirzīte,Māris Bukovskis,Gunta Strazda,Normunds Jurka,Immanuels Taivāns
出处
期刊:Journal of Breath Research [IOP Publishing]
卷期号:11 (3): 036009-036009 被引量:78
标识
DOI:10.1088/1752-7163/aa7799
摘要

Lung cancer is one of the most common malignancies and has a low 5-year survival rate. There are no cheap, simple and widely available screening methods for the early diagnostics of lung cancer. The aim of this study was to determine whether analysis of exhaled breath with an artificial olfactory sensor using support vector analysis can differentiate patients with lung cancer from healthy individuals and patients with other lung diseases, regardless of the stage of lung cancer and the most common comorbidities. Patients with histologically or cytologically verified lung cancer, healthy volunteers and patients with other lung diseases (e.g. chronic obstructive pulmonary disease (COPD), asthma, pneumonia, pulmonary embolism, benign lung tumors) were enrolled in the study. Breath sample collection and analysis with a Cyranose 320 sensor device was performed and data were further analyzed using a support vector machine (SVM). The SVM correctly differentiated between cancer patients and healthy volunteers in 98.8% of cases. The cancer versus non-cancer group patients (healthy volunteers and patients with other lung diseases) were classified correctly by SVM in 87.3% of cases. In the mixed diagnosis groups (only cancer, only COPD, cancer + COPD and control) all 79 out of 79 patients were predicted correctly in the cancer + COPD group, with the rate of correct prognosis in other patient groups being lower. Exhaled breath analysis by electronic nose using a SVM is able to discriminate patients with lung cancer from healthy subjects and mixed groups of patients with different lung diseases. It can also provide a certain level of discrimination between lung cancer patients, lung cancer patients with concomitant COPD, COPD alone and a healthy control group.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Emma完成签到,获得积分10
刚刚
宋宋发布了新的文献求助10
刚刚
caiiiii发布了新的文献求助10
1秒前
英姑应助无限的板栗采纳,获得10
2秒前
2秒前
明亮的初阳完成签到,获得积分10
3秒前
3秒前
无餍应助果实采纳,获得10
3秒前
思源应助果实采纳,获得10
3秒前
方百招发布了新的文献求助10
3秒前
小鼠鼠的小狐狸完成签到,获得积分10
4秒前
格桑花完成签到,获得积分20
4秒前
Lucas应助芙卡洛斯采纳,获得10
5秒前
鱼刺完成签到,获得积分10
5秒前
菲菲发布了新的文献求助10
6秒前
研友_Z60NmL完成签到,获得积分10
7秒前
茳芏完成签到,获得积分20
7秒前
Ava应助李博宇采纳,获得10
9秒前
早日毕业发布了新的文献求助30
13秒前
26完成签到,获得积分10
13秒前
李健的粉丝团团长应助cyx采纳,获得10
14秒前
jwz123完成签到,获得积分10
14秒前
一一一完成签到,获得积分10
15秒前
醉倒天瓢完成签到 ,获得积分10
15秒前
刻苦樱完成签到 ,获得积分10
16秒前
16秒前
洛溪汐发布了新的文献求助10
17秒前
caiiiii发布了新的文献求助10
17秒前
情怀应助惊执虫儿采纳,获得10
17秒前
tu完成签到,获得积分10
18秒前
homei2发布了新的文献求助10
18秒前
jwz123发布了新的文献求助10
19秒前
稳重梦旋完成签到,获得积分20
20秒前
21秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
21秒前
上上谦完成签到,获得积分10
21秒前
折柳完成签到 ,获得积分10
22秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540610
求助须知:如何正确求助?哪些是违规求助? 3117886
关于积分的说明 9333050
捐赠科研通 2815748
什么是DOI,文献DOI怎么找? 1547723
邀请新用户注册赠送积分活动 721130
科研通“疑难数据库(出版商)”最低求助积分说明 712499