摘要
Ocean acidification has been identified as a major contributor to ocean ecosystem decline, impacting the calcification, survival, and behavior of marine organisms. Numerous studies have observed altered sensory perception of chemical, auditory, and visual cues after exposure to elevated CO2. Sensory systems enable the observation of the external environment and therefore play a critical role in survival, communication, and behavior of marine organisms. This review seeks to (1) summarize the current knowledge of sensory impairment caused by ocean acidification, (2) discuss potential mechanisms behind this disruption, and (3) analyze the expected taxa differences in sensitivities to elevated CO2 conditions. Although a lack of standardized methodology makes cross-study comparisons challenging, trends and biases arise from this synthesis including a substantial focus on vertebrates, larvae or juveniles, the reef ecosystem, and chemosensory perception. Future studies must broaden the scope of the field by diversifying the taxa and ecosystems studied, incorporating ontogenetic comparisons, and focusing on cryptic sensory systems such as electroreception, magnetic sense, and the lateral line system. A discussion of possible mechanisms reveals GABAA receptor reversal as the conspicuous physiological mechanism. However, the potential remains for alternative disruption through structure or cue changes. Finally, a taxonomic comparison of physiological complexity reveals few trends in sensory sensitivities to lowered pH, but we hypothesize potential correlations relating to habitat, life history or relative use of sensory systems. Elevated CO2, in concordance with other global and local stressors, has the potential to drastically shift community composition and structure. Therefore research addressing the extent of sensory impairment, the underlying mechanisms, and the differences between taxa is vital for improved predictions of organismal response to ocean acidification.