DBGANet: Dual-Branch Geometric Attention Network for Accurate 3D Tooth Segmentation

计算机科学 分割 人工智能 背景(考古学) 计算机视觉 边界(拓扑) 点(几何) 模式识别(心理学) 数学 几何学 数学分析 古生物学 生物
作者
Zhijie Lin,Zhaoshui He,Xu Wang,Bing Zhang,Chang Liu,Wenqing Su,Ji Tan,Shengli Xie
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:16
标识
DOI:10.1109/tcsvt.2023.3331589
摘要

Accurate segmentation of 3D dental models derived from intra-oral scanners (IOS) is one of the key steps in many digital dental applications such as orthodontics and implants. However, it is difficult to accurately segment individual teeth and gums in 3D dental models due to the following problems: 1) the shape and appearance of adjacent teeth are very similar, which is easy to be misidentified; 2) the boundary between teeth and gums is often indistinct, especially in orthodontic patients with abnormalities such as missing and crowded teeth. To solve such problems, a Dual-Branch Geometric Attention Network (DBGANet) for 3D tooth segmentation is proposed, which can capture tooth geometric structure and detailed boundary information from multi-view geometric features encoded by 3D coordinates and normal vectors. The framework contains two branches, i.e., C-branch and N-branch. First, centroid-guided separable attention is designed in the C-branch to learn global context information by modeling the spatial dependencies of tooth point clouds, which can capture the overall geometric structure of teeth to better distinguish adjacent teeth with similar appearance. Then, Gaussian neighbor attention is designed in the N-branch to encode normal vectors to highlight detailed differences between geometric features at different points, which helps to refine the boundaries of teeth and gingiva for more accurate and smooth tooth segmentation. Extensive experiments on the real-patient datasets of 3D dental models demonstrate that the proposed DBGANet significantly outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菠萝菠萝哒应助xinjie采纳,获得20
2秒前
yar应助baling采纳,获得10
2秒前
niu发布了新的文献求助10
2秒前
2秒前
orixero应助Angie采纳,获得10
3秒前
HEXIN完成签到,获得积分10
4秒前
漫步云端完成签到 ,获得积分10
5秒前
5秒前
把心放在肚里应助Sunny采纳,获得10
6秒前
开心豁完成签到,获得积分10
6秒前
SHL完成签到,获得积分10
6秒前
6秒前
徐个愿应助义气的钥匙采纳,获得10
6秒前
7秒前
8秒前
10秒前
程程程发布了新的文献求助10
12秒前
14秒前
偶欧发布了新的文献求助10
15秒前
小jiojio的猪完成签到,获得积分10
16秒前
16秒前
丘比特应助科研通管家采纳,获得20
17秒前
丰丰应助阳阳采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
17秒前
wanci应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
18秒前
Starry发布了新的文献求助10
19秒前
糖果发布了新的文献求助10
20秒前
李铜发布了新的文献求助10
20秒前
义气的钥匙完成签到,获得积分10
20秒前
绕地球3圈完成签到,获得积分10
20秒前
Lenard Guma完成签到 ,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461239
求助须知:如何正确求助?哪些是违规求助? 3054973
关于积分的说明 9045828
捐赠科研通 2744888
什么是DOI,文献DOI怎么找? 1505722
科研通“疑难数据库(出版商)”最低求助积分说明 695812
邀请新用户注册赠送积分活动 695233