DBGANet: Dual-Branch Geometric Attention Network for Accurate 3D Tooth Segmentation

计算机科学 分割 人工智能 背景(考古学) 计算机视觉 边界(拓扑) 点(几何) 模式识别(心理学) 数学 几何学 数学分析 古生物学 生物
作者
Zhijie Lin,Zhaoshui He,Xu Wang,Bing Zhang,Chang Liu,Wenqing Su,Ji Tan,Shengli Xie
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:12
标识
DOI:10.1109/tcsvt.2023.3331589
摘要

Accurate segmentation of 3D dental models derived from intra-oral scanners (IOS) is one of the key steps in many digital dental applications such as orthodontics and implants. However, it is difficult to accurately segment individual teeth and gums in 3D dental models due to the following problems: 1) the shape and appearance of adjacent teeth are very similar, which is easy to be misidentified; 2) the boundary between teeth and gums is often indistinct, especially in orthodontic patients with abnormalities such as missing and crowded teeth. To solve such problems, a Dual-Branch Geometric Attention Network (DBGANet) for 3D tooth segmentation is proposed, which can capture tooth geometric structure and detailed boundary information from multi-view geometric features encoded by 3D coordinates and normal vectors. The framework contains two branches, i.e., C-branch and N-branch. First, centroid-guided separable attention is designed in the C-branch to learn global context information by modeling the spatial dependencies of tooth point clouds, which can capture the overall geometric structure of teeth to better distinguish adjacent teeth with similar appearance. Then, Gaussian neighbor attention is designed in the N-branch to encode normal vectors to highlight detailed differences between geometric features at different points, which helps to refine the boundaries of teeth and gingiva for more accurate and smooth tooth segmentation. Extensive experiments on the real-patient datasets of 3D dental models demonstrate that the proposed DBGANet significantly outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迷你的岩完成签到,获得积分10
4秒前
6秒前
西瓜皮完成签到,获得积分10
6秒前
7秒前
Ava应助西瓜采纳,获得10
8秒前
towerman完成签到,获得积分10
8秒前
organicboy完成签到 ,获得积分10
8秒前
独特白枫发布了新的文献求助10
8秒前
8秒前
在险峰完成签到 ,获得积分10
9秒前
啊TiP完成签到,获得积分10
9秒前
陈开心完成签到,获得积分10
10秒前
10秒前
烟花应助悲凉的紊采纳,获得10
11秒前
乐乐应助飘逸楷瑞采纳,获得20
12秒前
随便完成签到,获得积分10
12秒前
妍yan完成签到,获得积分10
13秒前
16秒前
初七123完成签到 ,获得积分10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
17秒前
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
yufanhui应助科研通管家采纳,获得10
17秒前
獨家記憶发布了新的文献求助10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
orixero应助Aimee采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 500
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3104880
求助须知:如何正确求助?哪些是违规求助? 2756128
关于积分的说明 7637295
捐赠科研通 2409779
什么是DOI,文献DOI怎么找? 1278480
科研通“疑难数据库(出版商)”最低求助积分说明 617439
版权声明 599242