The causal relationship between depression and frozen shoulder: A two-sample Mendelian randomization

孟德尔随机化 医学 置信区间 统计 方差分析 内科学 遗传学 数学 遗传变异 生物 基因 基因型
作者
Guang-Hua Deng,Yong-Kang Wei
出处
期刊:Medicine [Wolters Kluwer]
卷期号:102 (44): e35556-e35556 被引量:2
标识
DOI:10.1097/md.0000000000035556
摘要

To investigate the causal relationship between depression and frozen shoulder using a Mendelian randomization (MR) approach. Pooled data from a large-scale genome-wide association study were used. Genetic loci that were independent of each other and associated with depression and frozen shoulder in populations of European ancestry were selected as instrumental variables. Inverse variance weighting was used as the primary analysis method. Weighted median and MR-Egger were used as complementary analysis methods to assess causal effects. To explore the causal relationship between depression and frozen shoulder. Sensitivity test analysis was performed using heterogeneity test, multiple validity test, and leave-one-out analysis to explore the robustness of the results. Inverse variance weighting results showed an odds ratio (95% confidence interval) of 1.18 (0.91-1.53), P = .204, indicating that depression was not causally related to the development of frozen shoulder. And the test revealed no heterogeneity and pleiotropy, and the sensitivity analysis also showed robust results. In this study, genetic data were analyzed and explored using a two-sample MR analysis, and the results showed no causal relationship between depression and the occurrence of frozen shoulder, requiring the inclusion of a larger sample for the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杜杜要搞科研完成签到,获得积分10
刚刚
刚刚
萧一完成签到,获得积分10
1秒前
wanci应助欧派果奶采纳,获得10
1秒前
SciGPT应助木子采纳,获得10
2秒前
别梦寒发布了新的文献求助10
2秒前
2秒前
谦让夜香完成签到,获得积分10
3秒前
山药汤完成签到,获得积分20
3秒前
翼德救我i应助称心的以蕊采纳,获得10
4秒前
天天快乐应助kirito采纳,获得10
4秒前
4秒前
大大灰完成签到,获得积分10
4秒前
5秒前
王婧萱萱萱完成签到 ,获得积分10
5秒前
中西西完成签到 ,获得积分10
6秒前
一瓶水完成签到,获得积分20
6秒前
龙娟完成签到,获得积分10
7秒前
7秒前
Rainor发布了新的文献求助10
7秒前
8秒前
大大灰发布了新的文献求助10
8秒前
9秒前
Whale完成签到 ,获得积分10
9秒前
10秒前
11秒前
11秒前
浮游应助稽TR采纳,获得20
11秒前
11秒前
aixiaoming0503完成签到,获得积分10
12秒前
12秒前
阿豪发布了新的文献求助10
13秒前
yanyan发布了新的文献求助30
13秒前
knight发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
别梦寒完成签到,获得积分10
13秒前
爆米花应助InfiniteLulu采纳,获得10
13秒前
笨笨的太清完成签到,获得积分10
14秒前
Rainor完成签到,获得积分10
14秒前
浮浮世世发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4921214
求助须知:如何正确求助?哪些是违规求助? 4192475
关于积分的说明 13021901
捐赠科研通 3963791
什么是DOI,文献DOI怎么找? 2172608
邀请新用户注册赠送积分活动 1190331
关于科研通互助平台的介绍 1099525