A novel artificial intelligence model for fetal facial profile marker measurement during the first trimester

医学 三体 组内相关 接收机工作特性 鼻离子 胎儿 鼻骨 解剖 怀孕 内科学 生物 临床心理学 遗传学 心理测量学
作者
Chunya Ji,Kai Liu,Xin Yang,Yan Cao,Xiaoju Cao,Qi Pan,Zhong Yang,Lingling Sun,Linliang Yin,Xuedong Deng,Dong Ni
出处
期刊:BMC Pregnancy and Childbirth [Springer Nature]
卷期号:23 (1) 被引量:3
标识
DOI:10.1186/s12884-023-06046-x
摘要

To study the validity of an artificial intelligence (AI) model for measuring fetal facial profile markers, and to evaluate the clinical value of the AI model for identifying fetal abnormalities during the first trimester.This retrospective study used two-dimensional mid-sagittal fetal profile images taken during singleton pregnancies at 11-13+ 6 weeks of gestation. We measured the facial profile markers, including inferior facial angle (IFA), maxilla-nasion-mandible (MNM) angle, facial-maxillary angle (FMA), frontal space (FS) distance, and profile line (PL) distance using AI and manual measurements. Semantic segmentation and landmark localization were used to develop an AI model to measure the selected markers and evaluate the diagnostic value for fetal abnormalities. The consistency between AI and manual measurements was compared using intraclass correlation coefficients (ICC). The diagnostic value of facial markers measured using the AI model during fetal abnormality screening was evaluated using receiver operating characteristic (ROC) curves.A total of 2372 normal fetuses and 37 with abnormalities were observed, including 18 with trisomy 21, 7 with trisomy 18, and 12 with CLP. Among them, 1872 normal fetuses were used for AI model training and validation, and the remaining 500 normal fetuses and all fetuses with abnormalities were used for clinical testing. The ICCs (95%CI) of the IFA, MNM angle, FMA, FS distance, and PL distance between the AI and manual measurement for the 500 normal fetuses were 0.812 (0.780-0.840), 0.760 (0.720-0.795), 0.766 (0.727-0.800), 0.807 (0.775-0.836), and 0.798 (0.764-0.828), respectively. IFA clinically significantly identified trisomy 21 and trisomy 18, with areas under the ROC curve (AUC) of 0.686 (95%CI, 0.585-0.788) and 0.729 (95%CI, 0.621-0.837), respectively. FMA effectively predicted trisomy 18, with an AUC of 0.904 (95%CI, 0.842-0.966). MNM angle and FS distance exhibited good predictive value in CLP, with AUCs of 0.738 (95%CI, 0.573-0.902) and 0.677 (95%CI, 0.494-0.859), respectively.The consistency of fetal facial profile marker measurements between the AI and manual measurement was good during the first trimester. The AI model is a convenient and effective tool for the early screen for fetal trisomy 21, trisomy 18, and CLP, which can be generalized to first-trimester scanning (FTS).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaaaa发布了新的文献求助10
1秒前
1秒前
平常的谷蓝完成签到,获得积分10
1秒前
2秒前
2秒前
笑嘻嘻完成签到,获得积分10
2秒前
2秒前
3秒前
无花果应助南笙采纳,获得10
3秒前
超chao发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
啊啊啊发布了新的文献求助10
6秒前
6秒前
MET1发布了新的文献求助10
7秒前
知足常乐发布了新的文献求助10
7秒前
科研混子完成签到,获得积分10
7秒前
way完成签到,获得积分10
8秒前
8秒前
隐形曼青应助任性灵寒采纳,获得10
8秒前
cyt完成签到 ,获得积分20
9秒前
10秒前
10秒前
11秒前
么么儿发布了新的文献求助10
12秒前
12秒前
小马甲应助罐罐面采纳,获得30
13秒前
伽易完成签到,获得积分10
15秒前
meidi123发布了新的文献求助30
15秒前
cilan完成签到 ,获得积分10
15秒前
15秒前
15秒前
whywhy发布了新的文献求助10
16秒前
16秒前
2018夏之旅完成签到 ,获得积分10
16秒前
香香发布了新的文献求助10
16秒前
和春住完成签到,获得积分10
17秒前
17秒前
18秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476745
求助须知:如何正确求助?哪些是违规求助? 3068336
关于积分的说明 9107499
捐赠科研通 2759802
什么是DOI,文献DOI怎么找? 1514301
邀请新用户注册赠送积分活动 700193
科研通“疑难数据库(出版商)”最低求助积分说明 699379