Seasonal climate models for national wheat yield forecasts in Brazil

产量(工程) 降水 环境科学 气候学 气候变化 生长季节 播种 气候预报系统 气象学 地理 农学 生物 生态学 地质学 冶金 材料科学
作者
Maximilian Zachow,Rogério de Souza Nóia Júnior,Senthold Asseng
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:342: 109753-109753 被引量:7
标识
DOI:10.1016/j.agrformet.2023.109753
摘要

National wheat yield depends on climate conditions and usually remains unknown until harvest. In-season knowledge can be provided by wheat yield forecast systems, supporting the decision-making of farmers, food traders, or policymakers. In this study, we improved a previously developed statistical wheat yield model to forecast trend-corrected wheat yield in Brazil with monthly temperature and precipitation data from seasonal climate models (SCM) from the last three months before harvest. We chose SCM from the European Center for Medium-Range Weather Forecasts (ECMWF), the National Centers for Environmental Prediction (NCEP), and the UK-based Met-Office (UKMO). A multi-model ensembles (MME) approach from the three individual models as well as a climatology (CLIMATE) approach were also tested. Wheat yield forecasts were issued at the beginning of each month from planting in April to harvest in November. Each month, features from future months are forecasted by SCM, and past features are supplemented with observations from weather stations. Our approach shows a 12% RMSE in forecasting yield early in the season, from April to June. Forecasts start to improve from July onwards, with shorter lead times and including observed features from September onwards. At the beginning of October, about two months before harvest is completed, wheat yield can be forecasted with 7.6%, 7.9%, 7.9%, 9.1%, and 9.3% RMSE using climate data from UKMO, ECMWF, MME, NCEP, and CLIMATE respectively. Seasonal climate models can be useful tools to forecast national wheat yield, even shortly before harvest to prepare for possible food shortages. Our approach could be applied to other staple crops and regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薄衫发布了新的文献求助10
刚刚
1秒前
3秒前
3秒前
HJJHJH发布了新的文献求助10
5秒前
小蘑菇应助实验顺利采纳,获得10
7秒前
7秒前
CC完成签到,获得积分10
9秒前
shuai发布了新的文献求助20
11秒前
打打应助飞羽采纳,获得10
12秒前
gangan发布了新的文献求助10
13秒前
桐桐应助科研白小白采纳,获得10
14秒前
14秒前
16秒前
咕嘟咕嘟发布了新的文献求助10
19秒前
轩1完成签到,获得积分10
20秒前
Stanfuny发布了新的文献求助10
22秒前
可爱的函函应助shuai采纳,获得10
22秒前
丘比特应助wkkkkk采纳,获得10
23秒前
weimian完成签到 ,获得积分10
24秒前
好的完成签到,获得积分10
25秒前
111完成签到,获得积分10
25秒前
27秒前
course完成签到,获得积分10
28秒前
28秒前
Stanfuny完成签到,获得积分10
29秒前
潇洒的奇迹完成签到,获得积分10
29秒前
wankai发布了新的文献求助10
30秒前
研友_8KXdRL完成签到,获得积分10
31秒前
feige完成签到,获得积分10
31秒前
32秒前
33秒前
genandtal发布了新的文献求助10
34秒前
柔之发布了新的文献求助10
35秒前
打打应助笨笨采蓝采纳,获得10
35秒前
李健的粉丝团团长应助轩1采纳,获得10
36秒前
hzzhang68发布了新的文献求助10
36秒前
37秒前
xiaoblue发布了新的文献求助10
37秒前
不知名的呆毛应助盼盼采纳,获得10
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443772
求助须知:如何正确求助?哪些是违规求助? 3039907
关于积分的说明 8978775
捐赠科研通 2728422
什么是DOI,文献DOI怎么找? 1496514
科研通“疑难数据库(出版商)”最低求助积分说明 691668
邀请新用户注册赠送积分活动 689213