Seasonal climate models for national wheat yield forecasts in Brazil

产量(工程) 降水 环境科学 气候学 气候变化 生长季节 播种 气候预报系统 气象学 地理 农学 生物 生态学 地质学 冶金 材料科学
作者
Maximilian Zachow,Rogério de Souza Nóia Júnior,Senthold Asseng
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:342: 109753-109753 被引量:7
标识
DOI:10.1016/j.agrformet.2023.109753
摘要

National wheat yield depends on climate conditions and usually remains unknown until harvest. In-season knowledge can be provided by wheat yield forecast systems, supporting the decision-making of farmers, food traders, or policymakers. In this study, we improved a previously developed statistical wheat yield model to forecast trend-corrected wheat yield in Brazil with monthly temperature and precipitation data from seasonal climate models (SCM) from the last three months before harvest. We chose SCM from the European Center for Medium-Range Weather Forecasts (ECMWF), the National Centers for Environmental Prediction (NCEP), and the UK-based Met-Office (UKMO). A multi-model ensembles (MME) approach from the three individual models as well as a climatology (CLIMATE) approach were also tested. Wheat yield forecasts were issued at the beginning of each month from planting in April to harvest in November. Each month, features from future months are forecasted by SCM, and past features are supplemented with observations from weather stations. Our approach shows a 12% RMSE in forecasting yield early in the season, from April to June. Forecasts start to improve from July onwards, with shorter lead times and including observed features from September onwards. At the beginning of October, about two months before harvest is completed, wheat yield can be forecasted with 7.6%, 7.9%, 7.9%, 9.1%, and 9.3% RMSE using climate data from UKMO, ECMWF, MME, NCEP, and CLIMATE respectively. Seasonal climate models can be useful tools to forecast national wheat yield, even shortly before harvest to prepare for possible food shortages. Our approach could be applied to other staple crops and regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
做实验太菜完成签到,获得积分10
刚刚
WTX完成签到,获得积分0
刚刚
zink完成签到,获得积分10
1秒前
1秒前
龙玄泽应助木头人采纳,获得10
1秒前
amo完成签到,获得积分10
1秒前
2秒前
Georges-09完成签到,获得积分10
2秒前
香蕉觅云应助yh采纳,获得10
2秒前
我爱科研完成签到 ,获得积分10
2秒前
3秒前
苹果平安完成签到,获得积分10
3秒前
3秒前
能干的cen发布了新的文献求助10
3秒前
4秒前
Jenny完成签到 ,获得积分10
4秒前
咸菜完成签到,获得积分10
4秒前
Chris完成签到,获得积分10
4秒前
wulijie完成签到,获得积分10
5秒前
5秒前
小刘完成签到,获得积分10
5秒前
无情的牛马完成签到,获得积分10
5秒前
5秒前
周老八完成签到,获得积分10
5秒前
6秒前
6秒前
SciGPT应助duoduo采纳,获得10
7秒前
司徒不二完成签到,获得积分0
7秒前
哎呀妈呀发布了新的文献求助10
7秒前
7秒前
NexusExplorer应助小萝卜睿睿采纳,获得10
7秒前
冰咖啡完成签到,获得积分10
7秒前
8秒前
8秒前
啊啊阿啊阿完成签到 ,获得积分10
8秒前
Nathan发布了新的文献求助10
9秒前
筱谭完成签到 ,获得积分10
9秒前
友好冥王星完成签到 ,获得积分10
9秒前
靓丽的安筠完成签到,获得积分20
9秒前
羽毛发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912