重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Physics-constrained neural networks for half-space seismic wave modeling

人工神经网络 地震波 切线空间 波传播 计算机科学 约束(计算机辅助设计) 边界(拓扑) 平面波 物理 算法 地球物理学 数学分析 几何学 人工智能 数学 光学
作者
Yi S. Ding,Su Chen,Xiaojun Li,Liguo Jin,Shaokai Luan,Hao Sun
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:181: 105477-105477 被引量:8
标识
DOI:10.1016/j.cageo.2023.105477
摘要

Forward modelling of seismic waves using physics-informed neural networks (PINNs) has attracted much attention. A critical challenge is that these wave propagation problems are typically defined in large domains (i.e., half-space). However, a notable challenge arises when modeling seismic wave propagation in large domains (i.e., half-space), as PINNs may encounter the issue of "soft constraint failure". To address this problem, we propose a novel framework called physics-enhanced neural networks (PENNs) specifically designed for modeling seismic wave propagation in half-space. The method of images is incorporated to effectively implement the free stress boundary conditions of the Earth's surface, leading to successful propagation of plane waves and cylindrical waves in a half-space. We analyze the training dynamics of neural networks when solving two-dimensional (2D) wave equations from the neural tangent kernel (NTK) perspective. An adaptive training algorithm is introduced to mitigate the unbalanced gradient flow dynamics of the different components of the loss function of PINNs/PENNs. Furthermore, to tackle the complex behavior of seismic waves in layered media, a sequential training strategy is considered to enhance network scalability and solution accuracy. The results of numerical experiments demonstrate the accuracy and effectiveness of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hou完成签到,获得积分10
1秒前
1秒前
kk0612发布了新的文献求助10
2秒前
苹果寻菱完成签到,获得积分10
2秒前
3秒前
大胆夜天发布了新的文献求助10
3秒前
vffg发布了新的文献求助10
3秒前
123noo发布了新的文献求助10
3秒前
3秒前
4秒前
zain发布了新的文献求助10
4秒前
二中所长完成签到,获得积分10
4秒前
4秒前
lvbowen完成签到,获得积分10
5秒前
小阿琳发布了新的文献求助10
5秒前
5秒前
大个应助lllllsy采纳,获得10
6秒前
6秒前
tleeny完成签到,获得积分10
6秒前
唐一发布了新的文献求助10
6秒前
6秒前
俊逸柏柳发布了新的文献求助10
6秒前
zdfang关注了科研通微信公众号
6秒前
猪猪hero发布了新的文献求助10
7秒前
8秒前
8秒前
小青完成签到,获得积分10
8秒前
chh关注了科研通微信公众号
10秒前
无极微光应助jwj采纳,获得20
10秒前
10秒前
大个应助忧郁的听露采纳,获得10
11秒前
梦鱼完成签到,获得积分10
11秒前
11秒前
11秒前
风清扬发布了新的文献求助10
11秒前
Fairy发布了新的文献求助200
11秒前
11秒前
安王王完成签到 ,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654