已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ALADA: A lite automatic data augmentation framework for industrial defect detection

计算机科学 超参数 人工智能 人工神经网络 再培训 机器学习 数据挖掘 任务(项目管理) 模式识别(心理学) 工程类 系统工程 国际贸易 业务
作者
Yuxuan Wang,S.H. Chung,Waqar Ahmed Khan,Tianteng Wang,Jingjun Xu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:58: 102205-102205 被引量:12
标识
DOI:10.1016/j.aei.2023.102205
摘要

Industrial defect detection is a critical and challenging task in the quality control of manufacturing production. Competent in feature extraction and pattern recognition, deep learning shows great power for classifying and locating defects in industrial products. However, insufficient data records and diverse categories of defects restrict the detection accuracy of data-driven neural networks. One direction to solve such a problem is data augmentation, which aims at generating synthetic copies from existing data and improving the generalizability of detection models. However, confirming a suitable augmentation policy involves either human experience or substantial experiments for augmentation parameters. To address these challenges, in this work, a lite automatic data augmentation (ALADA) framework is proposed to jointly optimize the data augmentation policies and the neural network for industrial defect detection. First, a lite search space is formulated to efficiently sample augmentation policies and generate augmented images for joint optimization. To reduce the hyperparameter tuning efforts for retraining with searched policies, a three-step bi-level optimization scheme is proposed to replace the retraining strategy and update the model and augmentation parameter alternately. To solve the non-differentiable problem in the joint optimization scheme, policy gradient sampling is implemented to estimate the gradient flow efficiently. Experimental results on three industrial defect detection datasets, namely, Tianchi-TILE, GC10-DET, and NEU-DET, reveal that our proposed automatic augmentation framework outperforms the state-of-the-art augmentation methods and effectively improves the accuracy of the baseline defect detection model. The proposed ALADA scheme also alleviates the missed detection of defects in four practical industrial circumstances: textured background, uneven brightness, low contrast, and intraclass difference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
刚刚
3秒前
4秒前
昵称已挥发完成签到,获得积分10
4秒前
Akim应助洋洋采纳,获得10
4秒前
6秒前
华仔应助综述王采纳,获得10
9秒前
10秒前
10秒前
奥黛丽悟空完成签到,获得积分10
12秒前
852应助铃儿采纳,获得10
13秒前
木鸽子发布了新的文献求助10
13秒前
在水一方应助炙热晓露采纳,获得10
13秒前
14秒前
会飞的猪发布了新的文献求助10
15秒前
15秒前
rzheng5完成签到,获得积分10
17秒前
17秒前
科研通AI2S应助Hh采纳,获得10
18秒前
18秒前
19秒前
19秒前
斯文败类应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
20秒前
zho应助科研通管家采纳,获得30
20秒前
20秒前
CipherSage应助科研通管家采纳,获得30
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
田様应助科研通管家采纳,获得10
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
茴香豆完成签到 ,获得积分10
21秒前
江欢完成签到,获得积分10
21秒前
调皮的小笼包完成签到,获得积分10
22秒前
wanci应助细心的小蜜蜂采纳,获得10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526254
求助须知:如何正确求助?哪些是违规求助? 3106684
关于积分的说明 9281258
捐赠科研通 2804208
什么是DOI,文献DOI怎么找? 1539365
邀请新用户注册赠送积分活动 716529
科研通“疑难数据库(出版商)”最低求助积分说明 709515