亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Industrial structure upgrading and technological capability in China – based on the perspective of industrial structure depth

中国 产业组织 业务 分布(数学) 经济地理学 产品(数学) 技术变革 生产(经济) 透视图(图形) 过程(计算) 工业生产 区域科学 计算机科学 经济 地理 数学 数学分析 考古 人工智能 宏观经济学 操作系统 凯恩斯经济学 几何学
作者
Heer Wang
出处
期刊:Asian Journal of Technology Innovation [Informa]
卷期号:32 (2): 416-436 被引量:4
标识
DOI:10.1080/19761597.2023.2249519
摘要

ABSTRACTThis paper focuses on measuring the status of industrial structure upgrading in China using a scientific and reasonable approach. We introduce a novel metric called industrial structure depth (ISD), which incorporates inter-industry proportional relationships and intra-industry technological capability, surpassing traditional indicators. Through ISD, we comprehensively assessed industrial structure upgrading across thirty provinces, sub-industries, and the national level in China from 2002 to 2022. The findings reveal a general rise in ISD at the provincial and national levels, followed by a subsequent decline. The shift in the gradient distribution of ISD among provinces is notable, with rapid development observed in certain central provinces. From the perspective of industry categories, manufacturing emerges as a significant influencer of China's overall ISD fluctuations. Furthermore, we dissect the ISD into the domestic intermediate goods technology-driven aspect and the production process technology-driven aspect, which allows for a detailed analysis of the factors driving changes in China's industrial structure upgrading. Overall, this paper sheds light on the crucial role of technological capability in promoting China's industrial structure upgrading and provides insights into the dynamics of industrial structure upgrading fluctuations across different stages.KEYWORDS: Industrial structure upgradingsustainable developmentinput-output tabletechnological capabilitytrade war Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 Data from the National Bureau of Statistics of China.2 PRODYit=∑jxkijxkiPRODYij,t. Where PRODYit represent the technical complexity of industry i in year t. PRODYij,t represents the technical complexity of product j that belongs to industry i in year t, xkij/xki represents the proportion of the export value of product j in industry i belonging to region k to the total export value of industry i in region k. PRODYij,t=∑mXmij,t/Xmi,t∑mi,t⁡(Xmij,t/Xmi,t)Ym,t. Where Xmij,t represents the export value of product j that belongs to industry i, in year t and region m. Xmi,t represents the export value of industry i, in year t and region m and Ym,t represents the per capita real GDP of region m in year t.3 Trade data and per capita GDP data for different countries are used to calculate PRODY.4 To ensure data continuity, the missing data for the periods 2002–2008, 2009–2015, and 2016–2022 have been substituted using the provincial IOTs data from 2007, 2012, and 2017, respectively, based on the proximity principle (Sun et al., Citation2017). Similarly, at the national level, the missing data for the IOTs in 2003, 2004, 2006 and 2008, 2009 and 2011, 2013, 2014 and 2016, 2019, 2021 and 2022 are replaced by the input–output table data in 2002, 2005, 2007, 2010, 2012, 2015, 2018 and 2020, respectively.5 The relevant data for Tibet, Hong Kong, Macao Special Administrative Region, and Taiwan Province are lacking, so they are deleted.6 The classification method comes from the National Bureau of Statistics of China.7 The data is calculated through input–output tables at the national level in China.8 The estimation model of panel data is selected through the Hausman test, and finally, the two-way fixed effect model is selected for regression.9 Specifically, to ensure the continuity of the data, we referred to the method of Sun et al. (Citation2017) and substituted missing data for the periods 2002–2004, 2005–2009, 2010–2014, and 2015–2022 using the national IOTs data from 2002, 2007, 2012, and 2017, respectively.10 The t-test on the time-series data of the two types of ISDs shows that we cannot reject the null hypothesis that the means of the two types of ISDs are the same (p-value is 0.9859).Additional informationNotes on contributorsHeer WangHeer Wang received the BS degree in Economics and Science from Southwestern University of Finance and Economics, Chengdu, China, in 2019. She is currently working toward the PhD degree in Economics with the School of Economics, Zhejiang University, Hangzhou, China. Her research interests include industrial structure upgrading, agricultural and rural economy, and labour mobility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TXZ06完成签到,获得积分10
7秒前
9秒前
科研通AI2S应助spark采纳,获得10
13秒前
大力不评完成签到,获得积分20
18秒前
星辰大海应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
1分钟前
1分钟前
haoqingyun发布了新的文献求助10
1分钟前
hanwei_mei发布了新的文献求助10
1分钟前
1分钟前
1分钟前
hanwei_mei完成签到,获得积分10
2分钟前
haoqingyun发布了新的文献求助10
2分钟前
CodeCraft应助腼腆的月亮采纳,获得10
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
2分钟前
浮游应助wuran采纳,获得10
2分钟前
haoqingyun完成签到,获得积分10
2分钟前
搔扒完成签到,获得积分10
3分钟前
大熊完成签到 ,获得积分10
3分钟前
sy完成签到 ,获得积分10
3分钟前
情怀应助安详的面包采纳,获得10
3分钟前
qqq完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
远方完成签到,获得积分10
4分钟前
浮游应助wuran采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
6分钟前
佳佳发布了新的文献求助10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
Akim应助佳佳采纳,获得10
6分钟前
6分钟前
NexusExplorer应助huaixup采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650990
求助须知:如何正确求助?哪些是违规求助? 4782616
关于积分的说明 15052919
捐赠科研通 4809775
什么是DOI,文献DOI怎么找? 2572590
邀请新用户注册赠送积分活动 1528583
关于科研通互助平台的介绍 1487585