Industrial structure upgrading and technological capability in China – based on the perspective of industrial structure depth

中国 产业组织 业务 分布(数学) 经济地理学 产品(数学) 技术变革 生产(经济) 透视图(图形) 过程(计算) 工业生产 区域科学 计算机科学 经济 地理 数学 数学分析 考古 人工智能 宏观经济学 操作系统 凯恩斯经济学 几何学
作者
Heer Wang
出处
期刊:Asian Journal of Technology Innovation [Informa]
卷期号:32 (2): 416-436 被引量:4
标识
DOI:10.1080/19761597.2023.2249519
摘要

ABSTRACTThis paper focuses on measuring the status of industrial structure upgrading in China using a scientific and reasonable approach. We introduce a novel metric called industrial structure depth (ISD), which incorporates inter-industry proportional relationships and intra-industry technological capability, surpassing traditional indicators. Through ISD, we comprehensively assessed industrial structure upgrading across thirty provinces, sub-industries, and the national level in China from 2002 to 2022. The findings reveal a general rise in ISD at the provincial and national levels, followed by a subsequent decline. The shift in the gradient distribution of ISD among provinces is notable, with rapid development observed in certain central provinces. From the perspective of industry categories, manufacturing emerges as a significant influencer of China's overall ISD fluctuations. Furthermore, we dissect the ISD into the domestic intermediate goods technology-driven aspect and the production process technology-driven aspect, which allows for a detailed analysis of the factors driving changes in China's industrial structure upgrading. Overall, this paper sheds light on the crucial role of technological capability in promoting China's industrial structure upgrading and provides insights into the dynamics of industrial structure upgrading fluctuations across different stages.KEYWORDS: Industrial structure upgradingsustainable developmentinput-output tabletechnological capabilitytrade war Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 Data from the National Bureau of Statistics of China.2 PRODYit=∑jxkijxkiPRODYij,t. Where PRODYit represent the technical complexity of industry i in year t. PRODYij,t represents the technical complexity of product j that belongs to industry i in year t, xkij/xki represents the proportion of the export value of product j in industry i belonging to region k to the total export value of industry i in region k. PRODYij,t=∑mXmij,t/Xmi,t∑mi,t⁡(Xmij,t/Xmi,t)Ym,t. Where Xmij,t represents the export value of product j that belongs to industry i, in year t and region m. Xmi,t represents the export value of industry i, in year t and region m and Ym,t represents the per capita real GDP of region m in year t.3 Trade data and per capita GDP data for different countries are used to calculate PRODY.4 To ensure data continuity, the missing data for the periods 2002–2008, 2009–2015, and 2016–2022 have been substituted using the provincial IOTs data from 2007, 2012, and 2017, respectively, based on the proximity principle (Sun et al., Citation2017). Similarly, at the national level, the missing data for the IOTs in 2003, 2004, 2006 and 2008, 2009 and 2011, 2013, 2014 and 2016, 2019, 2021 and 2022 are replaced by the input–output table data in 2002, 2005, 2007, 2010, 2012, 2015, 2018 and 2020, respectively.5 The relevant data for Tibet, Hong Kong, Macao Special Administrative Region, and Taiwan Province are lacking, so they are deleted.6 The classification method comes from the National Bureau of Statistics of China.7 The data is calculated through input–output tables at the national level in China.8 The estimation model of panel data is selected through the Hausman test, and finally, the two-way fixed effect model is selected for regression.9 Specifically, to ensure the continuity of the data, we referred to the method of Sun et al. (Citation2017) and substituted missing data for the periods 2002–2004, 2005–2009, 2010–2014, and 2015–2022 using the national IOTs data from 2002, 2007, 2012, and 2017, respectively.10 The t-test on the time-series data of the two types of ISDs shows that we cannot reject the null hypothesis that the means of the two types of ISDs are the same (p-value is 0.9859).Additional informationNotes on contributorsHeer WangHeer Wang received the BS degree in Economics and Science from Southwestern University of Finance and Economics, Chengdu, China, in 2019. She is currently working toward the PhD degree in Economics with the School of Economics, Zhejiang University, Hangzhou, China. Her research interests include industrial structure upgrading, agricultural and rural economy, and labour mobility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐正发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
muhaicbj发布了新的文献求助10
3秒前
WoeL.Aug.11完成签到 ,获得积分10
5秒前
6秒前
小猪猪发布了新的文献求助10
6秒前
cugwzr发布了新的文献求助10
8秒前
长留完成签到,获得积分10
8秒前
9秒前
hhhzzy完成签到 ,获得积分10
9秒前
先一完成签到 ,获得积分10
9秒前
甜美的成败完成签到,获得积分10
10秒前
11秒前
优雅双双完成签到,获得积分10
11秒前
倪倪完成签到,获得积分20
12秒前
归诚发布了新的文献求助10
12秒前
科目三应助科研白小白采纳,获得10
12秒前
葵烛发布了新的文献求助10
13秒前
希望天下0贩的0应助987采纳,获得10
13秒前
芝诺的乌龟完成签到 ,获得积分0
15秒前
15秒前
BacktoDeutsche完成签到,获得积分10
16秒前
杳霭流玉发布了新的文献求助10
17秒前
zx关闭了zx文献求助
19秒前
嘿嘿牛魔王完成签到,获得积分20
20秒前
顺心醉蝶完成签到 ,获得积分10
20秒前
hmfyl发布了新的文献求助10
20秒前
20秒前
小小怪完成签到,获得积分10
21秒前
21秒前
葵烛完成签到,获得积分10
22秒前
22秒前
22秒前
愤怒的千易完成签到,获得积分10
23秒前
羽王完成签到,获得积分10
24秒前
25秒前
26秒前
Jasper应助归诚采纳,获得10
28秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464070
求助须知:如何正确求助?哪些是违规求助? 3057259
关于积分的说明 9056694
捐赠科研通 2747427
什么是DOI,文献DOI怎么找? 1507362
科研通“疑难数据库(出版商)”最低求助积分说明 696491
邀请新用户注册赠送积分活动 696004