Industrial structure upgrading and technological capability in China – based on the perspective of industrial structure depth

中国 产业组织 业务 分布(数学) 经济地理学 产品(数学) 技术变革 生产(经济) 透视图(图形) 过程(计算) 工业生产 区域科学 计算机科学 经济 地理 数学 数学分析 考古 凯恩斯经济学 人工智能 宏观经济学 操作系统 几何学
作者
Heer Wang
出处
期刊:Asian Journal of Technology Innovation [Taylor & Francis]
卷期号:32 (2): 416-436 被引量:4
标识
DOI:10.1080/19761597.2023.2249519
摘要

ABSTRACTThis paper focuses on measuring the status of industrial structure upgrading in China using a scientific and reasonable approach. We introduce a novel metric called industrial structure depth (ISD), which incorporates inter-industry proportional relationships and intra-industry technological capability, surpassing traditional indicators. Through ISD, we comprehensively assessed industrial structure upgrading across thirty provinces, sub-industries, and the national level in China from 2002 to 2022. The findings reveal a general rise in ISD at the provincial and national levels, followed by a subsequent decline. The shift in the gradient distribution of ISD among provinces is notable, with rapid development observed in certain central provinces. From the perspective of industry categories, manufacturing emerges as a significant influencer of China's overall ISD fluctuations. Furthermore, we dissect the ISD into the domestic intermediate goods technology-driven aspect and the production process technology-driven aspect, which allows for a detailed analysis of the factors driving changes in China's industrial structure upgrading. Overall, this paper sheds light on the crucial role of technological capability in promoting China's industrial structure upgrading and provides insights into the dynamics of industrial structure upgrading fluctuations across different stages.KEYWORDS: Industrial structure upgradingsustainable developmentinput-output tabletechnological capabilitytrade war Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 Data from the National Bureau of Statistics of China.2 PRODYit=∑jxkijxkiPRODYij,t. Where PRODYit represent the technical complexity of industry i in year t. PRODYij,t represents the technical complexity of product j that belongs to industry i in year t, xkij/xki represents the proportion of the export value of product j in industry i belonging to region k to the total export value of industry i in region k. PRODYij,t=∑mXmij,t/Xmi,t∑mi,t⁡(Xmij,t/Xmi,t)Ym,t. Where Xmij,t represents the export value of product j that belongs to industry i, in year t and region m. Xmi,t represents the export value of industry i, in year t and region m and Ym,t represents the per capita real GDP of region m in year t.3 Trade data and per capita GDP data for different countries are used to calculate PRODY.4 To ensure data continuity, the missing data for the periods 2002–2008, 2009–2015, and 2016–2022 have been substituted using the provincial IOTs data from 2007, 2012, and 2017, respectively, based on the proximity principle (Sun et al., Citation2017). Similarly, at the national level, the missing data for the IOTs in 2003, 2004, 2006 and 2008, 2009 and 2011, 2013, 2014 and 2016, 2019, 2021 and 2022 are replaced by the input–output table data in 2002, 2005, 2007, 2010, 2012, 2015, 2018 and 2020, respectively.5 The relevant data for Tibet, Hong Kong, Macao Special Administrative Region, and Taiwan Province are lacking, so they are deleted.6 The classification method comes from the National Bureau of Statistics of China.7 The data is calculated through input–output tables at the national level in China.8 The estimation model of panel data is selected through the Hausman test, and finally, the two-way fixed effect model is selected for regression.9 Specifically, to ensure the continuity of the data, we referred to the method of Sun et al. (Citation2017) and substituted missing data for the periods 2002–2004, 2005–2009, 2010–2014, and 2015–2022 using the national IOTs data from 2002, 2007, 2012, and 2017, respectively.10 The t-test on the time-series data of the two types of ISDs shows that we cannot reject the null hypothesis that the means of the two types of ISDs are the same (p-value is 0.9859).Additional informationNotes on contributorsHeer WangHeer Wang received the BS degree in Economics and Science from Southwestern University of Finance and Economics, Chengdu, China, in 2019. She is currently working toward the PhD degree in Economics with the School of Economics, Zhejiang University, Hangzhou, China. Her research interests include industrial structure upgrading, agricultural and rural economy, and labour mobility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低的紫完成签到,获得积分10
1秒前
晚风完成签到,获得积分10
2秒前
leishenwang完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
Sheryl完成签到,获得积分10
3秒前
缓慢晟睿完成签到,获得积分10
3秒前
细心沛山完成签到,获得积分10
3秒前
SYY完成签到,获得积分10
3秒前
Creamsoda完成签到,获得积分10
4秒前
深海鳕鱼完成签到,获得积分10
5秒前
李明涵完成签到 ,获得积分10
5秒前
坚强幼荷发布了新的文献求助10
6秒前
phw完成签到,获得积分10
6秒前
7秒前
7秒前
万能图书馆应助lixm采纳,获得10
7秒前
SYY发布了新的文献求助10
7秒前
4659完成签到 ,获得积分10
7秒前
8秒前
深情安青应助lyh采纳,获得10
8秒前
嘟嘟等文章完成签到,获得积分10
8秒前
1997_Aris发布了新的文献求助10
8秒前
心如止水完成签到,获得积分10
9秒前
张腾飞发布了新的文献求助20
9秒前
Anyemzl完成签到,获得积分10
9秒前
好学的猪发布了新的文献求助10
9秒前
小王爱看文献完成签到 ,获得积分10
9秒前
10秒前
kathy发布了新的文献求助30
11秒前
11秒前
老叶发布了新的文献求助10
12秒前
音悦台发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
14秒前
小yang发布了新的文献求助10
14秒前
14秒前
14秒前
小杨完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582