An Interpretable and Accurate Deep-Learning Diagnosis Framework Modeled With Fully and Semi-Supervised Reciprocal Learning

可解释性 人工智能 计算机科学 机器学习 分类器(UML) 深度学习 互惠的 分割 监督学习 上下文图像分类 半监督学习 模式识别(心理学) 人工神经网络 图像(数学) 哲学 语言学
作者
Chong Wang,Yuanhong Chen,Fengbei Liu,Michael S. Elliott,Chun Fung Kwok,Carlos A. Peña‐Solórzano,Helen Frazer,Davis J. McCarthy,Gustavo Carneiro
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 392-404 被引量:4
标识
DOI:10.1109/tmi.2023.3306781
摘要

The deployment of automated deep-learning classifiers in clinical practice has the potential to streamline the diagnosis process and improve the diagnosis accuracy, but the acceptance of those classifiers relies on both their accuracy and interpretability. In general, accurate deep-learning classifiers provide little model interpretability, while interpretable models do not have competitive classification accuracy. In this paper, we introduce a new deep-learning diagnosis framework, called InterNRL, that is designed to be highly accurate and interpretable. InterNRL consists of a student-teacher framework, where the student model is an interpretable prototype-based classifier (ProtoPNet) and the teacher is an accurate global image classifier (GlobalNet). The two classifiers are mutually optimised with a novel reciprocal learning paradigm in which the student ProtoPNet learns from optimal pseudo labels produced by the teacher GlobalNet, while GlobalNet learns from ProtoPNet's classification performance and pseudo labels. This reciprocal learning paradigm enables InterNRL to be flexibly optimised under both fully- and semi-supervised learning scenarios, reaching state-of-the-art classification performance in both scenarios for the tasks of breast cancer and retinal disease diagnosis. Moreover, relying on weakly-labelled training images, InterNRL also achieves superior breast cancer localisation and brain tumour segmentation results than other competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐百褶裙完成签到 ,获得积分10
1秒前
陈军应助雪山飞龙采纳,获得10
1秒前
paracetamol完成签到,获得积分10
1秒前
July完成签到,获得积分10
2秒前
聪明怜阳完成签到,获得积分10
2秒前
领导范儿应助quan采纳,获得10
2秒前
Ren发布了新的文献求助10
3秒前
充电宝应助泡椒采纳,获得10
3秒前
heng完成签到,获得积分20
4秒前
ananan完成签到,获得积分10
4秒前
小元发布了新的文献求助10
4秒前
多金完成签到,获得积分10
4秒前
文文发布了新的文献求助10
5秒前
5秒前
heng发布了新的文献求助10
7秒前
桐桐应助芦苇采纳,获得10
7秒前
土豆泥完成签到 ,获得积分10
8秒前
东北发布了新的文献求助30
9秒前
平常的可乐完成签到 ,获得积分10
9秒前
钵钵鸡完成签到 ,获得积分10
10秒前
赘婿应助绿眼虫采纳,获得20
10秒前
含蓄的明雪完成签到,获得积分10
11秒前
12秒前
不安慕蕊完成签到,获得积分10
12秒前
傻傻的诗蕊完成签到,获得积分10
12秒前
在水一方应助高文雅采纳,获得10
13秒前
Iris发布了新的文献求助10
13秒前
13秒前
传奇3应助魔幻妖妖采纳,获得10
14秒前
15秒前
16秒前
DriftHhh完成签到,获得积分20
16秒前
存封完成签到,获得积分10
17秒前
17秒前
一二三完成签到,获得积分10
18秒前
阿May完成签到 ,获得积分10
18秒前
coconut发布了新的文献求助10
18秒前
19秒前
xx发布了新的文献求助10
19秒前
花花发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148683
求助须知:如何正确求助?哪些是违规求助? 2799722
关于积分的说明 7836622
捐赠科研通 2457168
什么是DOI,文献DOI怎么找? 1307779
科研通“疑难数据库(出版商)”最低求助积分说明 628265
版权声明 601663