Machine Learning Predicting Atrial Fibrillation as an Adverse Event in the Warfarin and Aspirin in Reduced Cardiac Ejection Fraction (WARCEF) Trial

医学 心房颤动 华法林 心力衰竭 内科学 心脏病学 阿司匹林 窦性心律 逻辑回归 射血分数
作者
Ying X. Gue,Elon Correa,John L.P. Thompson,Shun Kohsaka,Min Qian,Gregory Y.H. Lip
出处
期刊:The American Journal of Medicine [Elsevier]
卷期号:136 (11): 1099-1108.e2 被引量:2
标识
DOI:10.1016/j.amjmed.2023.07.019
摘要

Abstract

Background

Atrial fibrillation and heart failure commonly coexist due to shared pathophysiological mechanisms. Prompt identification of patients with heart failure at risk of developing atrial fibrillation would allow clinicians the opportunity to implement appropriate monitoring strategy and timely treatment, reducing the impact of atrial fibrillation on patients' health.

Methods

Four machine learning models combined with logistic regression and cluster analysis were applied post hoc to patient-level data from the Warfarin and Aspirin in Patients with Heart Failure and Sinus Rhythm (WARCEF) trial to identify factors that predict development of atrial fibrillation in patients with heart failure.

Results

Logistic regression showed that White divorced patients have a 1.75-fold higher risk of atrial fibrillation than White patients reporting other marital statuses. By contrast, similar analysis suggests that non-White patients who live alone have a 2.58-fold higher risk than those not living alone. Machine learning analysis also identified "marital status" and "live alone" as relevant predictors of atrial fibrillation. Apart from previously well-recognized factors, the machine learning algorithms and cluster analysis identified 2 distinct clusters, namely White and non-White ethnicities. This should serve as a reminder of the impact of social factors on health.

Conclusion

The use of machine learning can prove useful in identifying novel cardiac risk factors. Our analysis has shown that "social factors," such as living alone, may disproportionately increase the risk of atrial fibrillation in the under-represented non-White patient group with heart failure, highlighting the need for more studies focusing on stratification of multiracial cohorts to better uncover the heterogeneity of atrial fibrillation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助lsq108采纳,获得10
刚刚
传奇3应助小子一阿一采纳,获得10
1秒前
JxJ完成签到,获得积分10
1秒前
zhoujiahui发布了新的文献求助10
2秒前
烂漫的易真完成签到,获得积分10
4秒前
5秒前
7秒前
7秒前
8秒前
8秒前
8秒前
温暖亦旋完成签到,获得积分20
9秒前
9秒前
上官若男应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得20
10秒前
orixero应助科研通管家采纳,获得10
10秒前
啦啦啦发布了新的文献求助10
11秒前
qiu发布了新的文献求助10
12秒前
13秒前
项阑悦发布了新的文献求助10
14秒前
lsq108发布了新的文献求助10
14秒前
Ava应助大福采纳,获得10
15秒前
乐乐应助zzz采纳,获得10
16秒前
顾城浪子完成签到,获得积分10
19秒前
19秒前
香蕉以菱发布了新的文献求助10
20秒前
qiu完成签到,获得积分10
21秒前
项阑悦完成签到,获得积分10
21秒前
法克西瓜汁完成签到,获得积分10
21秒前
果果发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
小二郎应助啦啦啦采纳,获得10
23秒前
26秒前
大佬救救我完成签到,获得积分20
26秒前
柔弱以旋完成签到 ,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135007
求助须知:如何正确求助?哪些是违规求助? 2785964
关于积分的说明 7774560
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298183
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825