Machine Learning Predicting Atrial Fibrillation as an Adverse Event in the Warfarin and Aspirin in Reduced Cardiac Ejection Fraction (WARCEF) Trial

医学 心房颤动 华法林 心力衰竭 内科学 心脏病学 阿司匹林 窦性心律 逻辑回归 射血分数
作者
Ying X. Gue,Elon Correa,John L.P. Thompson,Shun Kohsaka,Min Qian,Gregory Y.H. Lip
出处
期刊:The American Journal of Medicine [Elsevier BV]
卷期号:136 (11): 1099-1108.e2 被引量:2
标识
DOI:10.1016/j.amjmed.2023.07.019
摘要

Abstract

Background

Atrial fibrillation and heart failure commonly coexist due to shared pathophysiological mechanisms. Prompt identification of patients with heart failure at risk of developing atrial fibrillation would allow clinicians the opportunity to implement appropriate monitoring strategy and timely treatment, reducing the impact of atrial fibrillation on patients' health.

Methods

Four machine learning models combined with logistic regression and cluster analysis were applied post hoc to patient-level data from the Warfarin and Aspirin in Patients with Heart Failure and Sinus Rhythm (WARCEF) trial to identify factors that predict development of atrial fibrillation in patients with heart failure.

Results

Logistic regression showed that White divorced patients have a 1.75-fold higher risk of atrial fibrillation than White patients reporting other marital statuses. By contrast, similar analysis suggests that non-White patients who live alone have a 2.58-fold higher risk than those not living alone. Machine learning analysis also identified "marital status" and "live alone" as relevant predictors of atrial fibrillation. Apart from previously well-recognized factors, the machine learning algorithms and cluster analysis identified 2 distinct clusters, namely White and non-White ethnicities. This should serve as a reminder of the impact of social factors on health.

Conclusion

The use of machine learning can prove useful in identifying novel cardiac risk factors. Our analysis has shown that "social factors," such as living alone, may disproportionately increase the risk of atrial fibrillation in the under-represented non-White patient group with heart failure, highlighting the need for more studies focusing on stratification of multiracial cohorts to better uncover the heterogeneity of atrial fibrillation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
三金完成签到,获得积分10
1秒前
小超超完成签到 ,获得积分10
2秒前
沈括完成签到,获得积分10
3秒前
高大莺完成签到 ,获得积分10
3秒前
4秒前
刘zx完成签到,获得积分10
4秒前
隐形霸完成签到,获得积分10
5秒前
lynne完成签到,获得积分10
6秒前
牛肉面完成签到 ,获得积分10
7秒前
研友_8KX15L完成签到,获得积分10
7秒前
SWL完成签到 ,获得积分10
8秒前
虚幻的涵柏完成签到,获得积分10
8秒前
zizi发布了新的文献求助20
8秒前
马仔酷酷地完成签到,获得积分10
8秒前
hhh完成签到,获得积分10
9秒前
时尚初柳完成签到,获得积分10
9秒前
lll完成签到,获得积分10
9秒前
Pursuit完成签到,获得积分10
9秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
我是大美女完成签到,获得积分10
10秒前
10秒前
科奇应助科研通管家采纳,获得10
10秒前
彪行天下完成签到,获得积分10
10秒前
一苇以航完成签到 ,获得积分10
10秒前
土豆完成签到,获得积分10
11秒前
老六完成签到 ,获得积分10
12秒前
平常冬天完成签到,获得积分10
13秒前
紫苏完成签到,获得积分10
14秒前
CDH完成签到,获得积分10
14秒前
14秒前
罐装冰块完成签到,获得积分10
15秒前
胡柱柱完成签到,获得积分10
15秒前
Sofia完成签到 ,获得积分0
16秒前
Wqhao完成签到,获得积分10
16秒前
16秒前
ZHANG_Kun完成签到 ,获得积分10
16秒前
白开水完成签到,获得积分10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968603
求助须知:如何正确求助?哪些是违规求助? 3513420
关于积分的说明 11168029
捐赠科研通 3248900
什么是DOI,文献DOI怎么找? 1794540
邀请新用户注册赠送积分活动 875187
科研通“疑难数据库(出版商)”最低求助积分说明 804676