已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Predicting Atrial Fibrillation as an Adverse Event in the Warfarin and Aspirin in Reduced Cardiac Ejection Fraction (WARCEF) Trial

医学 心房颤动 华法林 心力衰竭 内科学 心脏病学 阿司匹林 窦性心律 逻辑回归 射血分数
作者
Ying X. Gue,Elon Correa,John L.P. Thompson,Shun Kohsaka,Min Qian,Gregory Y.H. Lip
出处
期刊:The American Journal of Medicine [Elsevier BV]
卷期号:136 (11): 1099-1108.e2 被引量:2
标识
DOI:10.1016/j.amjmed.2023.07.019
摘要

Abstract

Background

Atrial fibrillation and heart failure commonly coexist due to shared pathophysiological mechanisms. Prompt identification of patients with heart failure at risk of developing atrial fibrillation would allow clinicians the opportunity to implement appropriate monitoring strategy and timely treatment, reducing the impact of atrial fibrillation on patients' health.

Methods

Four machine learning models combined with logistic regression and cluster analysis were applied post hoc to patient-level data from the Warfarin and Aspirin in Patients with Heart Failure and Sinus Rhythm (WARCEF) trial to identify factors that predict development of atrial fibrillation in patients with heart failure.

Results

Logistic regression showed that White divorced patients have a 1.75-fold higher risk of atrial fibrillation than White patients reporting other marital statuses. By contrast, similar analysis suggests that non-White patients who live alone have a 2.58-fold higher risk than those not living alone. Machine learning analysis also identified "marital status" and "live alone" as relevant predictors of atrial fibrillation. Apart from previously well-recognized factors, the machine learning algorithms and cluster analysis identified 2 distinct clusters, namely White and non-White ethnicities. This should serve as a reminder of the impact of social factors on health.

Conclusion

The use of machine learning can prove useful in identifying novel cardiac risk factors. Our analysis has shown that "social factors," such as living alone, may disproportionately increase the risk of atrial fibrillation in the under-represented non-White patient group with heart failure, highlighting the need for more studies focusing on stratification of multiracial cohorts to better uncover the heterogeneity of atrial fibrillation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助春江采纳,获得10
2秒前
汉堡包应助西西弗斯采纳,获得10
3秒前
田様应助王伟采纳,获得10
3秒前
张辰熙完成签到 ,获得积分10
3秒前
3秒前
4秒前
倒霉的芒果完成签到 ,获得积分10
4秒前
陶1122发布了新的文献求助10
4秒前
hlink发布了新的文献求助10
5秒前
8秒前
9秒前
Yingkun_Xu完成签到,获得积分10
9秒前
10秒前
刘小源完成签到 ,获得积分10
11秒前
咖啡味椰果完成签到 ,获得积分10
12秒前
毛毛念发布了新的文献求助10
12秒前
Liangyong_Fu完成签到 ,获得积分10
13秒前
春江发布了新的文献求助10
14秒前
开放如天完成签到 ,获得积分10
15秒前
15秒前
16秒前
迹K完成签到,获得积分10
17秒前
科研通AI5应助悄悄采纳,获得10
18秒前
宁紫涵发布了新的文献求助10
20秒前
20秒前
汉堡包应助自然卷采纳,获得10
21秒前
少年游完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
Ak完成签到,获得积分0
23秒前
陶1122发布了新的文献求助10
25秒前
25秒前
大模型应助沉静安荷采纳,获得10
26秒前
香蕉觅云应助lan采纳,获得10
26秒前
xiaofeiyan发布了新的文献求助60
27秒前
kiki完成签到 ,获得积分10
29秒前
Epiphany发布了新的文献求助10
31秒前
陶1122完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976560
求助须知:如何正确求助?哪些是违规求助? 3520659
关于积分的说明 11204287
捐赠科研通 3257271
什么是DOI,文献DOI怎么找? 1798653
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806570