Machine Learning Predicting Atrial Fibrillation as an Adverse Event in the Warfarin and Aspirin in Reduced Cardiac Ejection Fraction (WARCEF) Trial

医学 心房颤动 华法林 心力衰竭 内科学 心脏病学 阿司匹林 窦性心律 逻辑回归 射血分数
作者
Ying X. Gue,Elon Correa,John L.P. Thompson,Shun Kohsaka,Min Qian,Gregory Y.H. Lip
出处
期刊:The American Journal of Medicine [Elsevier BV]
卷期号:136 (11): 1099-1108.e2 被引量:2
标识
DOI:10.1016/j.amjmed.2023.07.019
摘要

Abstract

Background

Atrial fibrillation and heart failure commonly coexist due to shared pathophysiological mechanisms. Prompt identification of patients with heart failure at risk of developing atrial fibrillation would allow clinicians the opportunity to implement appropriate monitoring strategy and timely treatment, reducing the impact of atrial fibrillation on patients' health.

Methods

Four machine learning models combined with logistic regression and cluster analysis were applied post hoc to patient-level data from the Warfarin and Aspirin in Patients with Heart Failure and Sinus Rhythm (WARCEF) trial to identify factors that predict development of atrial fibrillation in patients with heart failure.

Results

Logistic regression showed that White divorced patients have a 1.75-fold higher risk of atrial fibrillation than White patients reporting other marital statuses. By contrast, similar analysis suggests that non-White patients who live alone have a 2.58-fold higher risk than those not living alone. Machine learning analysis also identified "marital status" and "live alone" as relevant predictors of atrial fibrillation. Apart from previously well-recognized factors, the machine learning algorithms and cluster analysis identified 2 distinct clusters, namely White and non-White ethnicities. This should serve as a reminder of the impact of social factors on health.

Conclusion

The use of machine learning can prove useful in identifying novel cardiac risk factors. Our analysis has shown that "social factors," such as living alone, may disproportionately increase the risk of atrial fibrillation in the under-represented non-White patient group with heart failure, highlighting the need for more studies focusing on stratification of multiracial cohorts to better uncover the heterogeneity of atrial fibrillation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxt完成签到,获得积分10
刚刚
大橙子发布了新的文献求助10
3秒前
聪明静柏完成签到 ,获得积分10
5秒前
kimiwanano完成签到,获得积分10
7秒前
lu完成签到,获得积分10
8秒前
Profeto应助齐嫒琳采纳,获得10
9秒前
10秒前
情怀应助科研通管家采纳,获得10
11秒前
从来都不会放弃zr完成签到,获得积分10
15秒前
1459完成签到,获得积分10
17秒前
行者+完成签到,获得积分10
17秒前
GongSyi完成签到 ,获得积分10
18秒前
Boris完成签到 ,获得积分10
20秒前
哭泣笑柳完成签到,获得积分10
20秒前
万能图书馆应助大橙子采纳,获得10
23秒前
大眼睛土豆完成签到,获得积分10
27秒前
一条虫gg完成签到,获得积分10
30秒前
31秒前
32秒前
35秒前
大橙子发布了新的文献求助10
35秒前
dzy发布了新的文献求助10
39秒前
故意的冰淇淋完成签到 ,获得积分10
40秒前
司藤完成签到 ,获得积分10
41秒前
niumi190完成签到,获得积分0
41秒前
温馨完成签到 ,获得积分10
43秒前
东方琉璃完成签到,获得积分10
44秒前
45秒前
刘闹闹完成签到 ,获得积分10
46秒前
量子星尘发布了新的文献求助10
47秒前
雅3165完成签到 ,获得积分10
47秒前
51秒前
52秒前
狂野元枫完成签到 ,获得积分10
54秒前
ruochenzu发布了新的文献求助10
57秒前
大葱鸭发布了新的文献求助10
57秒前
ABC完成签到,获得积分20
59秒前
原本发布了新的文献求助10
59秒前
dzy完成签到,获得积分20
1分钟前
amber完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022