Clinicopathological features, treatment modalities, and prognosis of esophageal neuroendocrine carcinoma: A single‐center retrospective study

医学 神经内分泌癌 内科学 回顾性队列研究 治疗方式 模式 肿瘤科 单中心 中心(范畴论) 普通外科 放射科 结晶学 社会学 化学 社会科学
作者
Y Zhang,J T Liao,Ying Lin,Chang Liu,Zhen Wu,Bo Yu,Si Sun,Hui Yu,Xiao Hua Hui,Xiang Hua Wu,Xin Zhao,Hui Jie Wang,Qiang Zheng,Yuan Li,Zhi Hu,Jia Lei Wang
出处
期刊:Journal of Digestive Diseases [Wiley]
卷期号:24 (8-9): 472-479 被引量:2
标识
DOI:10.1111/1751-2980.13219
摘要

Esophageal neuroendocrine carcinoma (ENEC) is a rare cancer that is highly malignant and related to a poor prognosis. In this retrospective study we aimed to elucidate the clinical characteristics, diagnosis and management of patients with ENEC and to evaluate the potential prognostic factors.Altogether 82 patients diagnosed with ENEC between January 2009 and December 2020 at the Fudan University Shanghai Cancer Center were retrospectively enrolled. Patients' survival was analyzed using the Kaplan-Meier and log-rank methods. Univariate and multivariate analyses and a Cox regression model were used to identify the prognostic factors.The median overall survival (mOS) was 13 months in all patients. Multivariate analysis revealed that advanced tumor stage (hazard ratio [HR] 2.67, 95% confidence interval [CI] 1.07-6.66, P = 0.0353), liver (HR 3.36, 95% CI 1.53-7.41, P = 0.0026) and lung metastasis (HR 3.37, 95% CI 1.20-9.51, P = 0.0214) were associated with a poor prognosis. While positive chromogranin A (CgA) expression was related to a favorable outcome (HR 0.21, 95% CI 0.09-0.49, P < 0.001). Also, patients had adjustment of chemotherapy (dose reduction or less than three cycles) were prone to a worse prognosis compared with those did not (HR 4.36, 95% CI 2.10-9.08, P < 0.001).In patients with ENEC, advanced cancer stage, adjustment of chemotherapy, liver and lung metastasis were associated with a poor survival, while CgA expression was related to a favorable prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尺素寸心发布了新的文献求助10
1秒前
orixero应助BOSLobster采纳,获得10
2秒前
orixero应助yatou5651采纳,获得10
3秒前
在水一方应助卡卡采纳,获得10
3秒前
追寻羿完成签到 ,获得积分10
4秒前
hhzz发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
7秒前
科研通AI2S应助好玩和有趣采纳,获得10
7秒前
美丽跳跳糖完成签到,获得积分20
7秒前
7秒前
丘比特应助llll采纳,获得10
8秒前
8秒前
迟大猫应助su采纳,获得10
8秒前
发嗲的戎完成签到 ,获得积分10
9秒前
9秒前
内向凌兰完成签到,获得积分10
9秒前
9秒前
zhappy完成签到,获得积分10
10秒前
satchzhao发布了新的文献求助10
10秒前
友好的妍完成签到 ,获得积分10
11秒前
香山叶正红完成签到 ,获得积分10
12秒前
TOM发布了新的文献求助10
12秒前
沙耶酱完成签到,获得积分10
12秒前
赢赢发布了新的文献求助10
13秒前
14秒前
尺素寸心完成签到,获得积分10
15秒前
16秒前
老实不尤完成签到,获得积分10
17秒前
CCL应助mammoth采纳,获得40
18秒前
19秒前
19秒前
20秒前
21秒前
盘尼西林给盘尼西林的求助进行了留言
21秒前
21秒前
香蕉觅云应助XXF采纳,获得10
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808