Unsupervised seismic random noise attenuation by a recursive deep image prior

计算机科学 噪音(视频) 降噪 趋同(经济学) 算法 阈值 信号(编程语言) 人工智能 模式识别(心理学) 图像(数学) 经济 程序设计语言 经济增长
作者
Yun Zhang,Benfeng Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (6): V473-V485 被引量:2
标识
DOI:10.1190/geo2022-0612.1
摘要

The presence of random noise in field data significantly reduces the precision of subsequent seismic processing steps. As a result, random noise suppression is essential to improve the quality of field data. Because most traditional algorithms characterize seismic data linearly, the denoising accuracy is still open to be improved. As an unsupervised deep-learning method, the deep image prior (DIP) algorithm can characterize seismic data nonlinearly. The DIP uses randomly generated noise as input and noisy seismic data as desired output for random noise attenuation over several rounds of training epochs. However, determining the optimal training epoch for obtaining the final denoised result of unlabeled noisy data remains a challenge. To terminate the DIP training in time and obtain the denoised result, we design an improved quality control criterion (IQCC) based on adjacent estimations of seismic signal. To further improve the denoising accuracy, a recursive strategy is developed that uses the previous desired output as the new input and the previous denoised result as the new desired output. To obtain the optimal denoised results using the suggested recursive algorithm, a convergence condition also is established. Numerous examples of synthetic prestack and poststack data demonstrate the effectiveness of the designed IQCC and our recursive strategy with a convergence condition in protecting the effective signal, especially when compared with the curvelet thresholding algorithm and the original DIP. Furthermore, the denoising accuracy is on par with that of the supervised learning algorithm, demonstrating the adaptability of our recursive DIP under the convergence condition. Its superiority is further supported by field poststack seismic data processing, which uses the local similarity for performance assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文与武发布了新的文献求助10
刚刚
roccc发布了新的文献求助10
1秒前
闪闪谷槐完成签到,获得积分10
1秒前
1秒前
傻大发布了新的文献求助10
1秒前
希望天下0贩的0应助Oooner采纳,获得10
1秒前
充电宝应助香蕉君达采纳,获得10
1秒前
2秒前
共享精神应助土豪的摩托采纳,获得10
3秒前
3秒前
夏来应助今日也晴朗采纳,获得10
4秒前
信号灯发布了新的文献求助10
5秒前
浮游应助nicoleJ采纳,获得10
5秒前
Owen应助王子建采纳,获得10
5秒前
丘比特应助yy采纳,获得10
5秒前
小王子与玫瑰完成签到,获得积分10
6秒前
6秒前
杜志洪发布了新的文献求助50
6秒前
6秒前
6秒前
自觉雨文完成签到,获得积分10
7秒前
7秒前
说话的月亮完成签到,获得积分10
7秒前
雨碎寒江完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
归宁完成签到,获得积分20
8秒前
喜喜完成签到,获得积分10
9秒前
9秒前
roccc完成签到,获得积分10
9秒前
Levy完成签到,获得积分10
9秒前
鲸jing完成签到 ,获得积分10
10秒前
10秒前
孙某人完成签到 ,获得积分10
10秒前
Zzz完成签到,获得积分10
10秒前
11秒前
11秒前
nbdudu发布了新的文献求助10
11秒前
shenshi发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352387
求助须知:如何正确求助?哪些是违规求助? 4485204
关于积分的说明 13962313
捐赠科研通 4385188
什么是DOI,文献DOI怎么找? 2409321
邀请新用户注册赠送积分活动 1401751
关于科研通互助平台的介绍 1375322