Unsupervised seismic random noise attenuation by a recursive deep image prior

计算机科学 噪音(视频) 降噪 趋同(经济学) 算法 阈值 信号(编程语言) 人工智能 模式识别(心理学) 图像(数学) 经济增长 经济 程序设计语言
作者
Yun Zhang,Benfeng Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (6): V473-V485 被引量:2
标识
DOI:10.1190/geo2022-0612.1
摘要

The presence of random noise in field data significantly reduces the precision of subsequent seismic processing steps. As a result, random noise suppression is essential to improve the quality of field data. Because most traditional algorithms characterize seismic data linearly, the denoising accuracy is still open to be improved. As an unsupervised deep-learning method, the deep image prior (DIP) algorithm can characterize seismic data nonlinearly. The DIP uses randomly generated noise as input and noisy seismic data as desired output for random noise attenuation over several rounds of training epochs. However, determining the optimal training epoch for obtaining the final denoised result of unlabeled noisy data remains a challenge. To terminate the DIP training in time and obtain the denoised result, we design an improved quality control criterion (IQCC) based on adjacent estimations of seismic signal. To further improve the denoising accuracy, a recursive strategy is developed that uses the previous desired output as the new input and the previous denoised result as the new desired output. To obtain the optimal denoised results using the suggested recursive algorithm, a convergence condition also is established. Numerous examples of synthetic prestack and poststack data demonstrate the effectiveness of the designed IQCC and our recursive strategy with a convergence condition in protecting the effective signal, especially when compared with the curvelet thresholding algorithm and the original DIP. Furthermore, the denoising accuracy is on par with that of the supervised learning algorithm, demonstrating the adaptability of our recursive DIP under the convergence condition. Its superiority is further supported by field poststack seismic data processing, which uses the local similarity for performance assessments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果夜梦完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
NexusExplorer应助不安冰棍采纳,获得10
3秒前
竹本完成签到 ,获得积分10
4秒前
Dio完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
田様应助MGzsss采纳,获得10
7秒前
7秒前
思源应助你好采纳,获得10
7秒前
7秒前
8秒前
Daiys完成签到,获得积分10
9秒前
蓝天应助彩虹捕手采纳,获得10
10秒前
xiaofeidiao完成签到,获得积分10
10秒前
尔蝶完成签到 ,获得积分10
11秒前
ZZL发布了新的文献求助10
11秒前
搬砖发布了新的文献求助10
12秒前
13秒前
嗯哼完成签到 ,获得积分10
14秒前
Akim应助涯123采纳,获得10
15秒前
15秒前
高贵秋柳发布了新的文献求助10
16秒前
17秒前
英勇的若灵完成签到 ,获得积分10
17秒前
17秒前
专注雁卉发布了新的文献求助10
18秒前
MGzsss发布了新的文献求助10
18秒前
20秒前
薏_发布了新的文献求助10
20秒前
yznfly应助Tail采纳,获得20
20秒前
你好发布了新的文献求助10
21秒前
21秒前
heqi发布了新的文献求助10
22秒前
浮游应助dap采纳,获得10
22秒前
23秒前
直率三问完成签到 ,获得积分10
23秒前
谨慎哈密瓜完成签到,获得积分10
24秒前
搬砖关注了科研通微信公众号
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633567
求助须知:如何正确求助?哪些是违规求助? 4729249
关于积分的说明 14986268
捐赠科研通 4791473
什么是DOI,文献DOI怎么找? 2558931
邀请新用户注册赠送积分活动 1519330
关于科研通互助平台的介绍 1479617