亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting aqueous sorption of organic pollutants on microplastics with machine learning

吸附 吸附剂 化学 微塑料 水溶液 环境化学 环境科学 吸附 有机化学
作者
Ye Qiu,Zhejun Li,Tong Zhang,Ping Zhang
出处
期刊:Water Research [Elsevier BV]
卷期号:244: 120503-120503 被引量:31
标识
DOI:10.1016/j.watres.2023.120503
摘要

Microplastics (MPs) are ubiquitously distributed in freshwater systems and they can determine the environmental fate of organic pollutants (OPs) via sorption interaction. However, the diverse physicochemical properties of MPs and the wide range of OP species make a deeper understanding of sorption mechanisms challenging. Traditional isotherm-based sorption models are limited in their universality since they normally only consider the nature and characteristics of either sorbents or sorbates individually. Therefore, only specific equilibrium concentrations or specific sorption isotherms can be used to predict sorption. To systematically evaluate and predict OP sorption under the influence of both MPs and OPs properties, we collected 475 sorption data from peer-reviewed publications and developed a poly-parameter-linear-free-energy-relationship-embedded machine learning method to analyze the collected sorption datasets. Models of different algorithms were compared, and the genetic algorithm and support vector machine hybrid model displayed the best prediction performance (R2 of 0.93 and root-mean-square-error of 0.07). Finally, comparison results of three feature importance analysis tools (forward step wise method, Shapley method, and global sensitivity analysis) showed that chemical properties of MPs, excess molar refraction, and hydrogen-bonding interaction of OPs contribute the most to sorption, reflecting the dominant sorption mechanisms of hydrophobic partitioning, hydrogen bond formation, and π-π interaction, respectively. This study presents a novel sorbate-sorbent-based ML model with a wide applicability to expand our capacity in understanding the complicated process and mechanism of OP sorption on MPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
9秒前
gudaobo完成签到 ,获得积分10
16秒前
zyjsunye完成签到 ,获得积分0
17秒前
量子星尘发布了新的文献求助10
26秒前
翻翻完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
39秒前
back you up应助科研通管家采纳,获得20
40秒前
量子星尘发布了新的文献求助10
49秒前
量子星尘发布了新的文献求助10
57秒前
celinewu完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
宁宁完成签到 ,获得积分10
1分钟前
陈无敌完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
back you up完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
汉堡包应助nmslwsnd250采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
华仔应助科研通管家采纳,获得10
2分钟前
小透明应助科研通管家采纳,获得20
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
天天快乐应助hihi采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
hihi发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
牛八先生完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661009
求助须知:如何正确求助?哪些是违规求助? 3222203
关于积分的说明 9744032
捐赠科研通 2931818
什么是DOI,文献DOI怎么找? 1605232
邀请新用户注册赠送积分活动 757760
科研通“疑难数据库(出版商)”最低求助积分说明 734503