The pipeline leak detection algorithm based on D-S evidence theory and signal fusion mechanism

支持向量机 保险丝(电气) 计算机科学 鉴定(生物学) 数据挖掘 算法 管道(软件) 登普斯特-沙弗理论 人工智能 模式识别(心理学) 工程类 植物 生物 电气工程 程序设计语言
作者
Wenhao Xie,Yuan Liu,Xiaoyan Wang,Juntao Wang
出处
期刊:alexandria engineering journal [Elsevier]
卷期号:85: 218-235 被引量:3
标识
DOI:10.1016/j.aej.2023.11.043
摘要

In this paper, a pipeline leakage detection algorithm based on information fusion of pressure and flow is proposed, and its core work is the construction of BPA based on discount factors. The wavelet packet decomposition is carried out for the original signals, and the processed signals are used to train different SVM classifiers to achieve the first identification results. For the samples whose initial classification results are not completely consistent, BPA is calculated according to the confusion matrixes of the initial SVM classifiers. In this paper, static discount factors and dynamic discount factors are constructed using different methods, and dynamic discount factors are modified when decisions fail. Then comprehensive discount factors are constructed based on the combination of different static discount factors and dynamic discount factors. The Shafer discount rule is used to modify BPA. Finally, D-S evidence theory is used to fuse the BPA results of all classifiers under different discount combinations. Experiments show that this algorithm can effectively use the correlation of evidences to reasonably fuse the decision results of multiple sensors, overcome the problem that the accuracy of a single sensor is not high enough for leakage identification, and improve the identification accuracy of pipeline leakage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
刚刚
田様应助科研通管家采纳,获得30
刚刚
毛豆应助科研通管家采纳,获得10
1秒前
毛豆应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
被划分给被划分的求助进行了留言
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
小二郎应助玉暖洋洋采纳,获得10
2秒前
3秒前
浮浮世世发布了新的文献求助10
3秒前
宇文雨文发布了新的文献求助10
3秒前
4秒前
领衔发布了新的文献求助10
4秒前
4秒前
明理萤发布了新的文献求助10
5秒前
5秒前
NexusExplorer应助splaker7采纳,获得10
5秒前
礞石应助未来采纳,获得10
6秒前
华仔应助高源伯采纳,获得10
6秒前
7秒前
Lion发布了新的文献求助10
7秒前
Kliam发布了新的文献求助10
8秒前
顾矜应助Jtiger采纳,获得10
8秒前
8秒前
sunchaoyue发布了新的文献求助10
9秒前
ChiLi发布了新的文献求助10
9秒前
陈小白发布了新的文献求助10
9秒前
10秒前
11秒前
烫烫烫完成签到,获得积分10
11秒前
11秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470908
求助须知:如何正确求助?哪些是违规求助? 3063897
关于积分的说明 9086227
捐赠科研通 2754440
什么是DOI,文献DOI怎么找? 1511419
邀请新用户注册赠送积分活动 698420
科研通“疑难数据库(出版商)”最低求助积分说明 698291