已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An MRI-Based Radiomics Nomogram for Differentiation of Benign and Malignant Vertebral Compression Fracture

列线图 无线电技术 医学 接收机工作特性 逻辑回归 磁共振成像 放射科 肿瘤科 内科学
作者
Qianqian Feng,Shan Xu,Xiaoli Gong,Teng Wang,Xiaopeng He,Da-wei Liao,Fugang Han
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (2): 605-616 被引量:5
标识
DOI:10.1016/j.acra.2023.07.011
摘要

Rationale and Objectives

This study aimed to develop and validate a magnetic resonance imaging (MRI)-based radiomics nomogram combining radiomics signatures and clinical factors to differentiate between benign and malignant vertebral compression fractures (VCFs).

Materials and Methods

A total of 189 patients with benign VCFs (n = 112) or malignant VCFs (n = 77) were divided into training (n = 133) and validation (n = 56) cohorts. Radiomics features were extracted from MRI T1-weighted images and short-TI inversion recovery images to develop the radiomics signature, and the Rad score was constructed using least absolute shrinkage and selection operator regression. Demographic and MRI morphological characteristics were assessed to build a clinical factor model using multivariate logistic regression analysis. A radiomics nomogram was constructed based on the Rad score and independent clinical factors. Finally, the diagnostic performance of the radiomics nomogram, clinical model, and radiomics signature was validated using receiver operating characteristic and decision curve analysis (DCA).

Results

Six features were used to build a combined radiomics model (combined-RS). Pedicle or posterior element involvement, paraspinal mass, and fluid sign were identified as the most important morphological factors for building the clinical factor model. The radiomics signature was superior to the clinical model in terms of the area under the curve (AUC), accuracy, and specificity. The radiomics nomogram integrating the combined-RS, pedicle or posterior element involvement, paraspinal mass, and fluid sign achieved favorable predictive efficacy, generating AUCs of 0.92 and 0.90 in the training and validation cohorts, respectively. The DCA indicated good clinical usefulness of the radiomics nomogram.

Conclusion

The MRI-based radiomics nomogram, combining the radiomics signature and clinical factors, showed favorable predictive efficacy for differentiating benign from malignant VCFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ff完成签到,获得积分10
2秒前
科研通AI5应助眉洛采纳,获得10
4秒前
freezing发布了新的文献求助10
5秒前
淡淡完成签到,获得积分20
6秒前
默默小鸽子完成签到,获得积分10
7秒前
8秒前
曲奇发布了新的文献求助20
8秒前
hh完成签到 ,获得积分10
9秒前
共享精神应助lanyatian采纳,获得10
10秒前
10秒前
张emo发布了新的文献求助10
11秒前
12秒前
13秒前
袁翰将军完成签到 ,获得积分10
14秒前
16秒前
Yii发布了新的文献求助30
17秒前
烟花应助MeetAgainLZH采纳,获得10
19秒前
CodeCraft应助含蓄的小鸽子采纳,获得10
20秒前
轻松山柏完成签到,获得积分10
21秒前
张涛完成签到,获得积分10
22秒前
23秒前
xzy998应助科研通管家采纳,获得10
23秒前
xzy998应助科研通管家采纳,获得10
23秒前
正摩六堂完成签到,获得积分10
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
xzy998应助科研通管家采纳,获得10
23秒前
xzy998应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
xzy998应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
24秒前
Yii完成签到,获得积分10
24秒前
高兴的彩虹完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899245
求助须知:如何正确求助?哪些是违规求助? 4179637
关于积分的说明 12975373
捐赠科研通 3943651
什么是DOI,文献DOI怎么找? 2163478
邀请新用户注册赠送积分活动 1181737
关于科研通互助平台的介绍 1087447