Colorimetric detection of glucose with smartphone-coupled µPADs: harnessing machine learning algorithms in variable lighting environments

计算机科学 算法 机器学习 人工智能 变量(数学) 计算机视觉 数学 数学分析
作者
Solaleh Ghateii,Amir Jahanshahi
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:400: 134835-134835 被引量:5
标识
DOI:10.1016/j.snb.2023.134835
摘要

Recent advances in microfluidic paper-based analytical devices (µPADs) have shown immense potential for point-of-care testing (POCT) in resource-constrained settings, especially for monitoring glucose levels in patients with diabetes. However, the practical adoption of smartphone-coupled µPADs has been limited due to the variability in ambient lighting conditions, which affects the colorimetric detection. In this study, we have developed a machine learning-based algorithm together with a flash/no-flash technic, adaptable to various µPADs and capable of accurately monitoring plasma glucose levels across a wide range (25 µM to 30 mM), addressing issues related to environmental illumination variations, and shooting angles. The algorithm is implemented in an Android application, Gluco estimator. It utilizes images captured by smartphones and incorporates intelligent feature engineering. The XYZ color space is adopted for device-independent analysis. KI and TMB color indicators are used to enhance resolution for low and high glucose concentrations, respectively. The EBC classifier, combined with a handcrafted feature set, exhibits outstanding performance, achieving an accuracy of 95% and 91% for TMB and KI, respectively. Additionally, multiple linear regression (MLR) yields high reliability among regression models, with R2 values of 0.95 at 0.25 µM to 3 mM and 0.97 at 3–30 mM. This work represents a significant stride toward realizing a portable, high-resolution, and reliable smartphone-coupled µPAD in uncontrolled environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱zhu完成签到,获得积分10
刚刚
刚刚
ffchen111完成签到 ,获得积分10
1秒前
2秒前
卡卡给卡卡的求助进行了留言
4秒前
Jennifer发布了新的文献求助10
4秒前
nn发布了新的文献求助10
4秒前
123发布了新的文献求助10
4秒前
gzl完成签到,获得积分10
4秒前
zhangxin完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助nn采纳,获得10
14秒前
14秒前
出口的胖猪完成签到,获得积分10
14秒前
飞快的小懒虫完成签到,获得积分10
15秒前
思源应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
16秒前
Jennifer完成签到,获得积分10
16秒前
时然发布了新的文献求助10
16秒前
温暖寻琴完成签到,获得积分20
18秒前
19秒前
sitera发布了新的文献求助10
20秒前
嘘嘘是个碎嘴子完成签到,获得积分10
20秒前
Mrivy完成签到,获得积分10
21秒前
21秒前
倪倪发布了新的文献求助20
22秒前
zhq0627发布了新的文献求助30
22秒前
juziyaya应助你好明天采纳,获得30
23秒前
24秒前
小马甲应助酷炫醉山采纳,获得10
24秒前
cmuren99完成签到,获得积分10
24秒前
25秒前
25秒前
天天快乐应助粗暴的遥采纳,获得10
25秒前
26秒前
李麟发布了新的文献求助10
26秒前
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141417
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802814
捐赠科研通 2448645
什么是DOI,文献DOI怎么找? 1302695
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237