Hybrid particle swarm and sea horse optimization algorithm-based optimal reactive power dispatch of power systems comprising electric vehicles

粒子群优化 交流电源 可靠性(半导体) 电力系统 元启发式 功率(物理) 数学优化 网格 电力 工程类 计算机科学 电压 可靠性工程 算法 电气工程 数学 物理 几何学 量子力学
作者
Hany M. Hasanien,Ibrahim Alsaleh,Marcos Tostado‐Véliz,Miao Zhang,Ayoob Alateeq,Francisco Jurado,Abdullah Alassaf
出处
期刊:Energy [Elsevier BV]
卷期号:286: 129583-129583 被引量:22
标识
DOI:10.1016/j.energy.2023.129583
摘要

The reliability and effectiveness of today's electrical grids rely heavily on optimal reactive power dispatch (ORPD). The ORPD problem gets more challenging to resolve in the setting of ever-increasingly dynamic and complex systems. To handle the ORPD while also considering the existence of electric vehicles, this research introduces a novel technique: the Hybrid Particle Swarm Optimization and Sea Horse Optimization (PSOSHO) algorithm. Byreducing both active power loss and voltage variation, the proposed PSOSHO approach aims at improving the efficiency and reliability of the power grid. Simulation studies on reference power grids, including the IEEE 30-bus and IEEE 57-bus networks, verified its efficacy. Existing metaheuristic optimization techniques are compared using the same restrictions, governing parameters, and data. The results show that the PSOSHO method is trustworthy and effective in resolving the ORPD problem. One of the most pressing issues facing today's electricity grids is how to accommodate the growing number of electric vehicles. Real data on electric vehicles are incorporated in the analyses to obtain a realistic study. The suggested PSOSHO algorithm is a significant step forward in this area, providing a reliable and effective answer to the problem of optimum reactive power dispatch and helping to ensure the long-term viability of power systems in the age of electromobility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
忞航发布了新的文献求助10
3秒前
Orange应助Xxx采纳,获得10
3秒前
刘一一发布了新的文献求助10
4秒前
4秒前
xxxx完成签到 ,获得积分10
6秒前
所所应助王运静采纳,获得10
7秒前
kd1412应助秀丽青枫采纳,获得20
8秒前
小明应助糊涂的板凳采纳,获得10
8秒前
爆米花应助隐形的长颈鹿采纳,获得10
9秒前
不想干活应助BCyu采纳,获得30
10秒前
yulinhai完成签到,获得积分10
10秒前
852应助舟遥遥采纳,获得10
12秒前
顾矜应助onion采纳,获得10
13秒前
13秒前
13秒前
走蛋吧完成签到,获得积分10
13秒前
13秒前
15秒前
16秒前
遇上就这样吧应助褐板采纳,获得10
16秒前
17秒前
zq00完成签到,获得积分10
17秒前
希望天下0贩的0应助芒草lx采纳,获得10
18秒前
华仔应助Charlotte采纳,获得10
18秒前
18秒前
焦糖琥珀发布了新的文献求助10
19秒前
刘一一完成签到,获得积分10
19秒前
lejunia发布了新的文献求助30
20秒前
安龙王子完成签到,获得积分10
21秒前
细腻柜子发布了新的文献求助10
21秒前
22秒前
番茄豆丁发布了新的文献求助10
22秒前
正直的彤完成签到 ,获得积分10
22秒前
甜蜜秋蝶完成签到,获得积分10
22秒前
盐焗小星球完成签到,获得积分10
23秒前
烟花应助wzg666采纳,获得10
23秒前
舟遥遥发布了新的文献求助10
23秒前
shhoing应助WZ采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4579461
求助须知:如何正确求助?哪些是违规求助? 3997813
关于积分的说明 12376830
捐赠科研通 3672167
什么是DOI,文献DOI怎么找? 2023797
邀请新用户注册赠送积分活动 1057884
科研通“疑难数据库(出版商)”最低求助积分说明 944631