Construction of Z-scheme heterojunction TiO2-ZnO@Oxygen-doped gC3N4 composite for enhancing H2O2 photoproduction and removal of pharmaceutical pollutants under visible light

材料科学 兴奋剂 可见光谱 异质结 光催化 二氧化钛 光电子学 化学工程 纳米技术 光化学 有机化学 催化作用 冶金 化学 工程类
作者
Ton That Buu,Che Quang Cong,Vo Minh Quan,Bo Khanh Ngoc,Nguyen Thanh Hoai Nam,Lê Thị Phương Thảo,Dang Hai Minh Tam,Le Han,Nguyen Huu Hieu
出处
期刊:Surfaces and Interfaces [Elsevier]
卷期号:43: 103516-103516 被引量:13
标识
DOI:10.1016/j.surfin.2023.103516
摘要

In this study, the heterojunction photocatalyst of titanium dioxide-zinc oxide@oxygen-doped graphitic carbon nitride (TiO2-ZnO@OCN (TZ@OCN)) was synthesized using a simple and cost-effective hydrothermal self-assembly process. Characterization of the fabricated materials revealed that the incorporation of TiO2 and ZnO as inherent semiconductors along with the oxygen doping has effectively broadened the absorption spectrum of gC3N4, which can promote the electron generation and provide more active sites for O2 and H+ adsorption. It is noteworthy that the mentioned structure modification resulted in a superior H2O2 production rate among gC3N4-based photocatalysts with up to 3.11 mM.g−1 under visible light irradiation. Moreover, a valence band shifting from 1.57 to 2.91 eV upon doping oxygen atoms also elucidated the participation of active species in the photocatalytic degradation of ciprofloxacin (99.7 %, k = 0.030 min−1) and tetracyline (94.6 %, k = 0.017 min−1), in which superoxide radicals (•O2−) were shown to play a major role in removing the antibiotic. Besides, a Z-scheme heterojunction mechanism is additionally suggested, demonstrating the effectiveness of electron-hole pair splitting in the oxidation of antibiotics. Conclusively, the results show a novel and feasible modification pathway to enhance the photocatalytic activities of gC3N4 and other advanced semiconductor catalysts, especially for eliminating antibiotics and generating H2O2 within aqueous media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zfy发布了新的文献求助10
1秒前
1秒前
1秒前
Maor完成签到,获得积分10
1秒前
白菜发布了新的文献求助10
2秒前
2秒前
3秒前
妮妮完成签到 ,获得积分10
5秒前
5秒前
傲娇的凡旋应助spurs17采纳,获得10
5秒前
长情若魔完成签到,获得积分10
7秒前
XM完成签到,获得积分10
7秒前
7秒前
LQW发布了新的文献求助30
7秒前
大个应助Rrr采纳,获得10
7秒前
8秒前
9秒前
9秒前
11秒前
zfy完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
13秒前
w17638619025完成签到 ,获得积分20
14秒前
撒上咖啡应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
15秒前
菠萝吹雪应助科研通管家采纳,获得30
15秒前
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
15秒前
西内!卡Q因完成签到,获得积分10
16秒前
我是125应助www采纳,获得10
16秒前
小二郎应助鲜艳的棒棒糖采纳,获得10
16秒前
Zzzzzzzzzzz发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808