Quantitative morphological transformation of vascular bundles in the culm of moso bamboo (Phyllostachys pubescens)

维管束 竹子 植物茎 毛竹 血管组织 形态学(生物学) 捆绑 生物 植物 解剖 材料科学 复合材料 遗传学
作者
Taku Tsuyama,Kensei Hamai,Yoshio Kijidani,Junji Sugiyama
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (9): e0290732-e0290732 被引量:6
标识
DOI:10.1371/journal.pone.0290732
摘要

Vascular bundles of bamboo are determinants for mechanical properties of bamboo material and for physiological properties of living bamboo. The morphology of vascular bundles reflecting mechanical and physiological functions differs not only within internode tissue but also among different internodes in the culm. Although the distribution of vascular bundle fibers has received much attention, quantitative evaluation of the morphological transformation of vascular bundles associated with spatial distribution patterns has been limited. In this study deep learning models were used to determine quantitative changes in the distribution and morphology of vascular bundles in the culms of moso bamboo ( Phyllostachys pubescens ). A precise model for extracting vascular bundles from cross-sectional images was constructed using the U-Net model. Analyses of extracted vascular bundles from different internodes showed significant changes in vascular bundle distribution and morphology among internodes. Vascular bundles in lower internodes showed outer relative position and larger area than those in upper internodes. Aspect ratio and eccentricity indicate that vascular bundles in internodes near the base have more elliptical morphology, with a long axis in the radial direction. The variational autoencoder model using extracted vascular bundles enabled simulation of the morphological transformation of vascular bundles along with radial direction. These deep learning models enabled highly accurate quantification of vascular bundle morphologies, and will contribute to a further understanding of bamboo development as well as evaluation of the mechanical and physiological properties of bamboo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郝宝真发布了新的文献求助10
刚刚
刚刚
changnan发布了新的文献求助10
1秒前
高会和完成签到,获得积分10
2秒前
充电宝应助adinike采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
4秒前
矮小的盼夏完成签到 ,获得积分10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
又又应助科研通管家采纳,获得100
4秒前
4秒前
华仔应助科研通管家采纳,获得10
4秒前
cocolu应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
虾米应助科研通管家采纳,获得30
4秒前
Akim应助科研通管家采纳,获得10
4秒前
4秒前
呦呦应助科研通管家采纳,获得10
4秒前
今夕何夕完成签到,获得积分10
4秒前
Din发布了新的文献求助10
5秒前
5秒前
lmy发布了新的文献求助20
5秒前
6秒前
6秒前
wang发布了新的文献求助10
6秒前
8秒前
善学以致用应助you采纳,获得10
9秒前
hugdoggy完成签到,获得积分10
9秒前
小二郎应助陈少华采纳,获得10
9秒前
10秒前
爱听歌的青筠完成签到,获得积分10
11秒前
11秒前
11秒前
搜集达人应助lili采纳,获得10
11秒前
xiu发布了新的文献求助10
11秒前
liyuxuan完成签到,获得积分20
12秒前
考研小白发布了新的文献求助10
12秒前
HY发布了新的文献求助10
12秒前
buno应助祯果粒采纳,获得10
13秒前
bkagyin应助乔路采纳,获得10
13秒前
听风发布了新的文献求助10
13秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334447
求助须知:如何正确求助?哪些是违规求助? 2963653
关于积分的说明 8610845
捐赠科研通 2642632
什么是DOI,文献DOI怎么找? 1446831
科研通“疑难数据库(出版商)”最低求助积分说明 670421
邀请新用户注册赠送积分活动 658611