Disability risk prediction model based on machine learning among Chinese healthy older adults: results from the China Health and Retirement Longitudinal Study

机器学习 逻辑回归 随机森林 接收机工作特性 人工智能 朴素贝叶斯分类器 纵向研究 医学 Lasso(编程语言) 心理干预 多层感知器 老年学 人工神经网络 计算机科学 支持向量机 万维网 病理 精神科
作者
Yuchen Han,Shaobing Wang
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fpubh.2023.1271595
摘要

Background Predicting disability risk in healthy older adults in China is essential for timely preventive interventions, improving their quality of life, and providing scientific evidence for disability prevention. Therefore, developing a machine learning model capable of evaluating disability risk based on longitudinal research data is crucial. Methods We conducted a prospective cohort study of 2,175 older adults enrolled in the China Health and Retirement Longitudinal Study (CHARLS) between 2015 and 2018 to develop and validate this prediction model. Several machine learning algorithms (logistic regression, k-nearest neighbors, naive Bayes, multilayer perceptron, random forest, and XGBoost) were used to assess the 3-year risk of developing disability. The optimal cutoff points and adjustment parameters are explored in the training set, the prediction accuracy of the models is compared in the testing set, and the best-performing models are further interpreted. Results During a 3-year follow-up period, a total of 505 (23.22%) healthy older adult individuals developed disabilities. Among the 43 features examined, the LASSO regression identified 11 features as significant for model establishment. When comparing six different machine learning models on the testing set, the XGBoost model demonstrated the best performance across various evaluation metrics, including the highest area under the ROC curve (0.803), accuracy (0.757), sensitivity (0.790), and F1 score (0.789), while its specificity was 0.712. The decision curve analysis (DCA) indicated showed that XGBoost had the highest net benefit in most of the threshold ranges. Based on the importance of features determined by SHAP (model interpretation method), the top five important features were identified as right-hand grip strength, depressive symptoms, marital status, respiratory function, and age. Moreover, the SHAP summary plot was used to illustrate the positive or negative effects attributed to the features influenced by XGBoost. The SHAP dependence plot explained how individual features affected the output of the predictive model. Conclusion Machine learning-based prediction models can accurately evaluate the likelihood of disability in healthy older adults over a period of 3 years. A combination of XGBoost and SHAP can provide clear explanations for personalized risk prediction and offer a more intuitive understanding of the effect of key features in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌安萱完成签到,获得积分10
刚刚
两眼一睁就是困完成签到,获得积分10
1秒前
科研通AI6应助化学喵采纳,获得10
1秒前
1秒前
hbhbj发布了新的文献求助10
3秒前
3秒前
爆米花应助Pluto采纳,获得10
4秒前
jiangzong完成签到,获得积分10
4秒前
隐形曼青应助找不到文献采纳,获得10
4秒前
帅气小霜完成签到,获得积分10
4秒前
LKSkywalker完成签到,获得积分10
5秒前
TXQ发布了新的文献求助10
7秒前
英俊的铭应助zhuzhu采纳,获得10
8秒前
Xx完成签到,获得积分10
8秒前
Epiphany完成签到,获得积分10
8秒前
欣慰的绿蝶关注了科研通微信公众号
9秒前
波波发布了新的文献求助10
9秒前
hbhbj发布了新的文献求助10
10秒前
CipherSage应助缥缈的夜梅采纳,获得10
10秒前
10秒前
11秒前
13秒前
脑洞疼应助13采纳,获得20
13秒前
完美世界应助skyler采纳,获得10
13秒前
无花果应助小白采纳,获得10
15秒前
16秒前
orixero应助银玥采纳,获得10
17秒前
17秒前
ll完成签到,获得积分10
17秒前
高数数完成签到 ,获得积分10
17秒前
awuwuwu发布了新的文献求助10
18秒前
科研通AI6应助美好向日葵采纳,获得10
19秒前
机智平灵发布了新的文献求助10
19秒前
华山发布了新的文献求助30
19秒前
炙热的以南完成签到,获得积分10
20秒前
hbhbj发布了新的文献求助10
20秒前
帅气小霜发布了新的文献求助10
21秒前
mikejames完成签到,获得积分10
22秒前
桃桃发布了新的文献求助10
22秒前
洋芋小姐完成签到 ,获得积分20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058