Disability risk prediction model based on machine learning among Chinese healthy older adults: results from the China Health and Retirement Longitudinal Study

机器学习 逻辑回归 随机森林 接收机工作特性 人工智能 朴素贝叶斯分类器 纵向研究 医学 Lasso(编程语言) 心理干预 多层感知器 老年学 人工神经网络 计算机科学 支持向量机 万维网 病理 精神科
作者
Yuchen Han,Shaobing Wang
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fpubh.2023.1271595
摘要

Background Predicting disability risk in healthy older adults in China is essential for timely preventive interventions, improving their quality of life, and providing scientific evidence for disability prevention. Therefore, developing a machine learning model capable of evaluating disability risk based on longitudinal research data is crucial. Methods We conducted a prospective cohort study of 2,175 older adults enrolled in the China Health and Retirement Longitudinal Study (CHARLS) between 2015 and 2018 to develop and validate this prediction model. Several machine learning algorithms (logistic regression, k-nearest neighbors, naive Bayes, multilayer perceptron, random forest, and XGBoost) were used to assess the 3-year risk of developing disability. The optimal cutoff points and adjustment parameters are explored in the training set, the prediction accuracy of the models is compared in the testing set, and the best-performing models are further interpreted. Results During a 3-year follow-up period, a total of 505 (23.22%) healthy older adult individuals developed disabilities. Among the 43 features examined, the LASSO regression identified 11 features as significant for model establishment. When comparing six different machine learning models on the testing set, the XGBoost model demonstrated the best performance across various evaluation metrics, including the highest area under the ROC curve (0.803), accuracy (0.757), sensitivity (0.790), and F1 score (0.789), while its specificity was 0.712. The decision curve analysis (DCA) indicated showed that XGBoost had the highest net benefit in most of the threshold ranges. Based on the importance of features determined by SHAP (model interpretation method), the top five important features were identified as right-hand grip strength, depressive symptoms, marital status, respiratory function, and age. Moreover, the SHAP summary plot was used to illustrate the positive or negative effects attributed to the features influenced by XGBoost. The SHAP dependence plot explained how individual features affected the output of the predictive model. Conclusion Machine learning-based prediction models can accurately evaluate the likelihood of disability in healthy older adults over a period of 3 years. A combination of XGBoost and SHAP can provide clear explanations for personalized risk prediction and offer a more intuitive understanding of the effect of key features in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LONG完成签到,获得积分10
1秒前
1秒前
甜蜜秋蝶完成签到,获得积分10
1秒前
2秒前
TT发布了新的文献求助10
3秒前
啊实打实发布了新的文献求助10
3秒前
yam001发布了新的文献求助30
4秒前
Stanley完成签到,获得积分10
4秒前
LONG发布了新的文献求助10
4秒前
亮亮发布了新的文献求助50
4秒前
LZQ应助细心的小蜜蜂采纳,获得30
5秒前
艺玲发布了新的文献求助10
5秒前
小二郎应助Seven采纳,获得10
5秒前
设计狂魔完成签到,获得积分10
5秒前
5秒前
6秒前
韭黄发布了新的文献求助10
6秒前
科研小白完成签到,获得积分10
6秒前
7秒前
9℃发布了新的文献求助10
7秒前
甩看文献完成签到,获得积分10
7秒前
7秒前
欣喜书桃关注了科研通微信公众号
8秒前
8秒前
真实的熊猫完成签到,获得积分10
8秒前
小张不慌完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
十三完成签到,获得积分10
10秒前
juan发布了新的文献求助10
10秒前
丘比特应助白小白采纳,获得10
10秒前
10秒前
晓军发布了新的文献求助20
10秒前
11秒前
zxl完成签到,获得积分10
12秒前
专心搞学术完成签到,获得积分10
12秒前
FFF发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762