Disability risk prediction model based on machine learning among Chinese healthy older adults: results from the China Health and Retirement Longitudinal Study

机器学习 逻辑回归 随机森林 接收机工作特性 人工智能 朴素贝叶斯分类器 纵向研究 医学 Lasso(编程语言) 心理干预 多层感知器 老年学 人工神经网络 计算机科学 支持向量机 万维网 病理 精神科
作者
Yuchen Han,Shaobing Wang
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fpubh.2023.1271595
摘要

Background Predicting disability risk in healthy older adults in China is essential for timely preventive interventions, improving their quality of life, and providing scientific evidence for disability prevention. Therefore, developing a machine learning model capable of evaluating disability risk based on longitudinal research data is crucial. Methods We conducted a prospective cohort study of 2,175 older adults enrolled in the China Health and Retirement Longitudinal Study (CHARLS) between 2015 and 2018 to develop and validate this prediction model. Several machine learning algorithms (logistic regression, k-nearest neighbors, naive Bayes, multilayer perceptron, random forest, and XGBoost) were used to assess the 3-year risk of developing disability. The optimal cutoff points and adjustment parameters are explored in the training set, the prediction accuracy of the models is compared in the testing set, and the best-performing models are further interpreted. Results During a 3-year follow-up period, a total of 505 (23.22%) healthy older adult individuals developed disabilities. Among the 43 features examined, the LASSO regression identified 11 features as significant for model establishment. When comparing six different machine learning models on the testing set, the XGBoost model demonstrated the best performance across various evaluation metrics, including the highest area under the ROC curve (0.803), accuracy (0.757), sensitivity (0.790), and F1 score (0.789), while its specificity was 0.712. The decision curve analysis (DCA) indicated showed that XGBoost had the highest net benefit in most of the threshold ranges. Based on the importance of features determined by SHAP (model interpretation method), the top five important features were identified as right-hand grip strength, depressive symptoms, marital status, respiratory function, and age. Moreover, the SHAP summary plot was used to illustrate the positive or negative effects attributed to the features influenced by XGBoost. The SHAP dependence plot explained how individual features affected the output of the predictive model. Conclusion Machine learning-based prediction models can accurately evaluate the likelihood of disability in healthy older adults over a period of 3 years. A combination of XGBoost and SHAP can provide clear explanations for personalized risk prediction and offer a more intuitive understanding of the effect of key features in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪芷珍应助风中盼易采纳,获得10
刚刚
iVANPENNY应助打小就帅采纳,获得10
刚刚
刚刚
丘比特应助陌上花开采纳,获得10
1秒前
1秒前
kk发布了新的文献求助10
2秒前
东方樱发布了新的文献求助10
4秒前
4秒前
wanci应助学水看山采纳,获得10
5秒前
5秒前
6秒前
yukk完成签到 ,获得积分10
8秒前
8秒前
11秒前
今后应助迅速如波采纳,获得10
11秒前
12秒前
12秒前
学水看山完成签到,获得积分10
14秒前
14秒前
蛋挞好好吃完成签到,获得积分10
14秒前
15秒前
15秒前
顾文强发布了新的文献求助10
17秒前
领导范儿应助小菜研采纳,获得30
19秒前
李存发布了新的文献求助20
19秒前
超帅从筠完成签到,获得积分20
21秒前
大模型应助Birdy采纳,获得10
22秒前
Kevin完成签到,获得积分10
23秒前
23秒前
愤怒的海胆完成签到,获得积分10
26秒前
27秒前
28秒前
科目三应助kalah采纳,获得30
28秒前
demo6g发布了新的文献求助10
28秒前
29秒前
29秒前
Hongni发布了新的文献求助10
31秒前
31秒前
asdxsweef应助科研通管家采纳,获得20
32秒前
汉堡包应助科研通管家采纳,获得10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313711
求助须知:如何正确求助?哪些是违规求助? 2946037
关于积分的说明 8527998
捐赠科研通 2621608
什么是DOI,文献DOI怎么找? 1433953
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650651