Disability risk prediction model based on machine learning among Chinese healthy older adults: results from the China Health and Retirement Longitudinal Study

机器学习 逻辑回归 随机森林 接收机工作特性 人工智能 朴素贝叶斯分类器 纵向研究 医学 Lasso(编程语言) 心理干预 多层感知器 老年学 人工神经网络 计算机科学 支持向量机 万维网 病理 精神科
作者
Yuchen Han,Shaobing Wang
出处
期刊:Frontiers in Public Health [Frontiers Media]
卷期号:11
标识
DOI:10.3389/fpubh.2023.1271595
摘要

Background Predicting disability risk in healthy older adults in China is essential for timely preventive interventions, improving their quality of life, and providing scientific evidence for disability prevention. Therefore, developing a machine learning model capable of evaluating disability risk based on longitudinal research data is crucial. Methods We conducted a prospective cohort study of 2,175 older adults enrolled in the China Health and Retirement Longitudinal Study (CHARLS) between 2015 and 2018 to develop and validate this prediction model. Several machine learning algorithms (logistic regression, k-nearest neighbors, naive Bayes, multilayer perceptron, random forest, and XGBoost) were used to assess the 3-year risk of developing disability. The optimal cutoff points and adjustment parameters are explored in the training set, the prediction accuracy of the models is compared in the testing set, and the best-performing models are further interpreted. Results During a 3-year follow-up period, a total of 505 (23.22%) healthy older adult individuals developed disabilities. Among the 43 features examined, the LASSO regression identified 11 features as significant for model establishment. When comparing six different machine learning models on the testing set, the XGBoost model demonstrated the best performance across various evaluation metrics, including the highest area under the ROC curve (0.803), accuracy (0.757), sensitivity (0.790), and F1 score (0.789), while its specificity was 0.712. The decision curve analysis (DCA) indicated showed that XGBoost had the highest net benefit in most of the threshold ranges. Based on the importance of features determined by SHAP (model interpretation method), the top five important features were identified as right-hand grip strength, depressive symptoms, marital status, respiratory function, and age. Moreover, the SHAP summary plot was used to illustrate the positive or negative effects attributed to the features influenced by XGBoost. The SHAP dependence plot explained how individual features affected the output of the predictive model. Conclusion Machine learning-based prediction models can accurately evaluate the likelihood of disability in healthy older adults over a period of 3 years. A combination of XGBoost and SHAP can provide clear explanations for personalized risk prediction and offer a more intuitive understanding of the effect of key features in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭彭发布了新的文献求助10
刚刚
1秒前
现代期待发布了新的文献求助200
2秒前
思源应助秋沧海采纳,获得10
3秒前
4秒前
4秒前
与落发布了新的文献求助10
4秒前
4秒前
5秒前
开心小之发布了新的文献求助10
5秒前
乐观囧完成签到,获得积分10
5秒前
小宇完成签到,获得积分20
7秒前
7秒前
8秒前
wang发布了新的文献求助10
8秒前
江江发布了新的文献求助10
9秒前
clamon完成签到,获得积分10
9秒前
Elsa完成签到,获得积分10
9秒前
璨澄发布了新的文献求助10
9秒前
与落完成签到,获得积分10
10秒前
11秒前
Lucas应助苏打采纳,获得10
12秒前
现代期待完成签到,获得积分10
12秒前
12秒前
开心小之完成签到,获得积分10
13秒前
Joanna发布了新的文献求助10
15秒前
lz完成签到 ,获得积分10
15秒前
17秒前
orixero应助fgjhg采纳,获得30
18秒前
19秒前
19秒前
小马甲应助璨澄采纳,获得10
19秒前
cass完成签到,获得积分10
20秒前
21秒前
老实白梅发布了新的文献求助30
21秒前
Joanna完成签到,获得积分10
22秒前
24秒前
24秒前
科研狗完成签到 ,获得积分0
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962328
求助须知:如何正确求助?哪些是违规求助? 3508472
关于积分的说明 11141017
捐赠科研通 3241123
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872827
科研通“疑难数据库(出版商)”最低求助积分说明 803382