过氧二硫酸盐
过硫酸盐
化学
催化作用
氧化还原
降级(电信)
电子转移
双酚A
无机化学
煅烧
光化学
有机化学
电信
计算机科学
环氧树脂
作者
Huihui Wu,Qiushuang Li,Xiu Li,Xin Xu,Aijun Lin,Guozhi Cao,Wenjie Yang
标识
DOI:10.1016/j.seppur.2023.124945
摘要
The high-valent iron-oxo species (Fe(IV)O) exhibit great prospects for the removal of organic contaminants in iron-mediated persulfate activation. Nevertheless, an adequate research of the mechanisms involved in Fe(IV)-based activation processes and organic degradation remains elusive. Here, an Fe encapsulated in N-doped carbons catalyst (2Fe–NC) with three-dimensional flower shape and mesoporous structure was developed, which can 100 % remove various organic pollutants such as chloramphenicol (CAP), sulfamethoxazole, amoxicillin, benzoic acid, and bisphenol A within 30 min by peroxydisulfate (PDS) activation. In the oxidation system, 2Fe–NC as an electron transfer medium was critical to mediate electron transfer from organic compound to PDS, accompanied by the redox cycle of Fe(IV)/Fe(II) and Fe(IV)/Fe(III). Multiple experiments reveal that the oxidation mechanism of 2Fe–NC@PDS system is similar to the dioxygen activation mechanism of binuclear active sites, which activates PDS to form surface-active Fe(IV)O species without producing radicals. The two pathways of CAP degradation simulated by density functional theory calculations release 6.92 and 4.23 eV, respectively, which is thermodynamically favorable. Overall, the new insights gained in this work offer a significant route to design more effective advanced oxidation processes for refractory contaminant treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI