光催化
镍
催化作用
石墨氮化碳
电子转移
光化学
星团(航天器)
电子
化学物理
原子轨道
超快激光光谱学
材料科学
化学
吸收(声学)
光谱学
物理
有机化学
量子力学
计算机科学
程序设计语言
复合材料
作者
Fan Tian,Xiaofei Huang,Wangxuan Li,Yixuan An,Guangfang Li,Rong Chen
出处
期刊:ACS Catalysis
日期:2023-09-01
卷期号:13 (18): 12186-12196
被引量:17
标识
DOI:10.1021/acscatal.3c03063
摘要
Developing strategies to accelerate the electron–hole pair separation and understanding the mechanism are important for improving the activity of photocatalysts. Herein, constructing a weak interaction between nickel thiolate cluster (i.e., Ni12(SPhCH3)24) and graphitic carbon nitride (g-C3N4) is revealed as an effective strategy to regulate electron–hole pair separation. The π–π interaction between the triazine rings in g-C3N4 and the phenyl rings in Ni12(SPhCH3)24 offers a primary pathway for photogenerated electrons transfer from nickel cluster to g-C3N4. The photocatalytic hydrogen evolution rate of Ni12(SPhCH3)24/C3N4 achieves ∼3000 μmol g–1 h–1, which is about 230 times higher than that of pure g-C3N4. Theoretical analysis and femtosecond transient absorption spectroscopy show that the photogenerated electrons on the phenyl groups contribute to the unoccupied molecular orbitals (i.e., LUMOs+1) of Ni12(SPhCH3)24 and then transfer to the conduction band of g-C3N4 via the π–π interaction, which eventually results in the spatial electron–hole pair separation and improves the hydrogen evolution activity of the catalyst.
科研通智能强力驱动
Strongly Powered by AbleSci AI