Multiple-objective optimization of direct dual fuel stratification (DDFS) combustion at different loads

燃烧 分层(种子) 航程(航空) 环境科学 汽车工程 灵敏度(控制系统) 汽油 柴油 机械 计算机科学 工程类 化学 物理 废物管理 航空航天工程 种子休眠 植物 发芽 有机化学 电子工程 休眠 生物
作者
Yizi Zhu,Yanzhi Zhang,Zhixia He,Qian Wang,Weimin Li
出处
期刊:International Journal of Engine Research [SAGE]
卷期号:25 (3): 589-610
标识
DOI:10.1177/14680874231204662
摘要

The operating parameters of the direct dual fuel stratification (DDFS) strategy in a heavy-duty engine are optimized across a full load range by utilizing a combination of three-dimensional computational fluid dynamics simulation and genetic algorithm. After obtaining the optimized results, sensitivity analyses were conducted on the operating parameters at various loads using the Pearson method. The results show that the DDFS strategy can attain stable and efficient combustion across the entire full-load range after optimization. At low-to-medium loads, the engine’s performance is predominantly influenced by initial operating parameters, while both initial and injection parameters play critical roles at high loads. The sensitivities of operating parameters increase as load increases, with the operating parameters having higher sensitivities having more concentrated distributions, while those with lower sensitivities have more dispersed distributions. The optimal conditions for low-to-medium load combustion generally involve a premixed-dominated combustion regime with some degree of reactivity stratification, which is strongly influenced by charge thermodynamics. Increasing the proportion of high-reactivity diesel fuel can improve combustion efficiency and stability, particularly under low-load conditions. Under high-load conditions, the optimal combustion strategy involves using a significant amount of direct-injected gasoline to achieve a more distinct stratified and diffusion combustion regime, which helps mitigate excessive heat release rates. However, this approach may result in reduced fuel economy compared to the optimal strategy for low-to-medium loads. As a consequence, the role of charge thermodynamics becomes less significant while the injection strategy becomes more critical for achieving optimal combustion at high loads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助旋转鸡爪子采纳,获得10
刚刚
小琦琦完成签到,获得积分10
1秒前
Marciu33应助老汤姆采纳,获得10
3秒前
做实验之前先上三炷香完成签到,获得积分10
4秒前
77发布了新的文献求助10
5秒前
li发布了新的文献求助10
5秒前
ZSS完成签到,获得积分10
7秒前
玛琳卡迪马完成签到,获得积分10
7秒前
如意葶发布了新的文献求助10
8秒前
zjspidany应助直率的柚子采纳,获得10
8秒前
10秒前
11秒前
11秒前
11秒前
碧蓝丹烟发布了新的文献求助10
13秒前
七里香发布了新的文献求助10
13秒前
15秒前
17秒前
Cast_Lappland发布了新的文献求助10
17秒前
21秒前
22秒前
无花果应助Cast_Lappland采纳,获得10
22秒前
25发布了新的文献求助10
24秒前
毛毛完成签到 ,获得积分10
33秒前
33秒前
橙c美式发布了新的文献求助30
34秒前
34秒前
Owen应助明亮的冬天采纳,获得30
34秒前
38秒前
Ava应助今我来思采纳,获得10
40秒前
40秒前
忧郁如柏发布了新的文献求助10
41秒前
44秒前
HCLonely应助WEN采纳,获得10
44秒前
科研通AI2S应助25采纳,获得10
44秒前
44秒前
xxx完成签到 ,获得积分10
45秒前
zjspidany应助shidewu采纳,获得10
45秒前
喵喵发布了新的文献求助10
48秒前
hata233发布了新的文献求助10
48秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314113
求助须知:如何正确求助?哪些是违规求助? 2946546
关于积分的说明 8530432
捐赠科研通 2622170
什么是DOI,文献DOI怎么找? 1434347
科研通“疑难数据库(出版商)”最低求助积分说明 665268
邀请新用户注册赠送积分活动 650832