亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Eff-3DPSeg: 3D organ-level plant shoot segmentation using annotation-efficient deep learning

分割 人工智能 计算机科学 点云 注释 深度学习 模式识别(心理学) 监督学习 机器学习 人工神经网络
作者
Liyi Luo,Xintong Jiang,Yang Yu,Eugene Roy Antony Samy,Mark Lefsrud,Valerio Hoyos‐Villegas,Shangpeng Sun
出处
期刊:Plant phenomics [AAAS00]
卷期号:5
标识
DOI:10.34133/plantphenomics.0080
摘要

Reliable and automated 3-dimensional (3D) plant shoot segmentation is a core prerequisite for the extraction of plant phenotypic traits at the organ level. Combining deep learning and point clouds can provide effective ways to address the challenge. However, fully supervised deep learning methods require datasets to be point-wise annotated, which is extremely expensive and time-consuming. In our work, we proposed a novel weakly supervised framework, Eff-3DPSeg, for 3D plant shoot segmentation. First, high-resolution point clouds of soybean were reconstructed using a low-cost photogrammetry system, and the Meshlab-based Plant Annotator was developed for plant point cloud annotation. Second, a weakly supervised deep learning method was proposed for plant organ segmentation. The method contained (a) pretraining a self-supervised network using Viewpoint Bottleneck loss to learn meaningful intrinsic structure representation from the raw point clouds and (b) fine-tuning the pretrained model with about only 0.5% points being annotated to implement plant organ segmentation. After, 3 phenotypic traits (stem diameter, leaf width, and leaf length) were extracted. To test the generality of the proposed method, the public dataset Pheno4D was included in this study. Experimental results showed that the weakly supervised network obtained similar segmentation performance compared with the fully supervised setting. Our method achieved 95.1%, 96.6%, 95.8%, and 92.2% in the precision, recall, F1 score, and mIoU for stem-leaf segmentation for the soybean dataset and 53%, 62.8%, and 70.3% in the AP, AP@25, and AP@50 for leaf instance segmentation for the Pheno4D dataset. This study provides an effective way for characterizing 3D plant architecture, which will become useful for plant breeders to enhance selection processes. The trained networks are available at https://github.com/jieyi-one/EFF-3DPSEG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
隐形问萍发布了新的文献求助10
16秒前
赘婿应助爱听歌笑寒采纳,获得10
21秒前
26秒前
27秒前
John完成签到 ,获得积分10
30秒前
32秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
希望天下0贩的0应助jyy采纳,获得10
51秒前
1分钟前
1分钟前
月墨雪发布了新的文献求助10
1分钟前
浮云完成签到,获得积分10
1分钟前
小脚丫完成签到 ,获得积分10
1分钟前
烟花应助繁荣的土豆采纳,获得10
1分钟前
tarako发布了新的文献求助30
1分钟前
子平完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
Lucas应助爱听歌笑寒采纳,获得10
2分钟前
2分钟前
jyy发布了新的文献求助10
2分钟前
2分钟前
2分钟前
ldysaber完成签到,获得积分0
2分钟前
2分钟前
繁荣的土豆完成签到,获得积分20
2分钟前
3分钟前
劳健龙完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
5分钟前
十七应助cxy采纳,获得10
5分钟前
CodeCraft应助爱听歌笑寒采纳,获得10
5分钟前
5分钟前
5分钟前
NexusExplorer应助xx采纳,获得10
6分钟前
6分钟前
6分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3393035
求助须知:如何正确求助?哪些是违规求助? 3003391
关于积分的说明 8809133
捐赠科研通 2690184
什么是DOI,文献DOI怎么找? 1473496
科研通“疑难数据库(出版商)”最低求助积分说明 681603
邀请新用户注册赠送积分活动 674534