A Graph-Based Information Fusion Approach for ADHD Subtype Classification

计算机科学 图形 人工智能 机器学习 理论计算机科学
作者
Wuliang Huang,Xinlong Jianga,Chenlong Gaoa,Teng Zhanga,Yunbing Xing,Yiqiang Chen,Yi Zheng,Jie Li
标识
DOI:10.1109/smartworld-uic-atc-scalcom-digitaltwin-pricomp-metaverse56740.2022.00112
摘要

Attention deficit hyperactivity disorder (ADHD) is a common childhood mental disorder that encompasses three subtypes. Classifying each subtype has practical significance. However, the gold standard for subtype diagnosis depends on face-to-face consultation with psychiatrists, which is limited by medical resources. This paper proposes a graph-based multimodal fusion approach to classify each subtype objectively, alleviating the pressure on psychiatrists. The proposed method leverages heterogeneous signals, including motion and speech, which are significant indicators of ADHD. We construct a personal graph where each child is a vertex, and the similarity of their personal information measures edges. Since the associations between subjects modeled by the personal graph provide rich prior knowledge, we regard the problem of subtype classification as predicting the labels of vertices on a graph. A novel graph neural network model is proposed to enable information passing between children, fusing motion and speech features under the guidance of the personal graph. We design a reading scenario and collect a multimodal dataset containing 56 children with ADHD and 50 typically developing children. Results of ADHD subtype classification demonstrate the practical value of the proposed approach. We also perform ablation studies to verify the validity of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
vdfr发布了新的文献求助10
1秒前
1秒前
魔魔胡胡胡萝卜完成签到,获得积分10
1秒前
紫薇发布了新的文献求助10
1秒前
zoey完成签到,获得积分20
1秒前
1秒前
2秒前
3秒前
云水怒完成签到,获得积分10
3秒前
柠溪完成签到 ,获得积分10
4秒前
天天快乐应助zpctx采纳,获得10
4秒前
HH完成签到,获得积分10
4秒前
5秒前
小海完成签到,获得积分20
5秒前
ruan完成签到,获得积分20
6秒前
zoey发布了新的文献求助10
6秒前
lulu8382发布了新的文献求助10
7秒前
霞霞子完成签到 ,获得积分10
7秒前
NANA完成签到,获得积分10
7秒前
陈陈陈发布了新的文献求助10
7秒前
asdfzxcv应助饱满的冷荷采纳,获得10
8秒前
狂野的晓曼完成签到,获得积分10
8秒前
8秒前
考博圣体发布了新的文献求助10
8秒前
UP发布了新的文献求助20
9秒前
云起发布了新的文献求助10
9秒前
9秒前
FashionBoy应助进击的山竹采纳,获得30
10秒前
10秒前
11秒前
晴天霹雳3732完成签到,获得积分10
11秒前
yanying_shc发布了新的文献求助10
11秒前
搞怪孤丝完成签到 ,获得积分10
11秒前
12秒前
Xianhe完成签到,获得积分10
13秒前
小付发布了新的文献求助10
13秒前
taozhiqi发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637144
求助须知:如何正确求助?哪些是违规求助? 4742794
关于积分的说明 14998033
捐赠科研通 4795378
什么是DOI,文献DOI怎么找? 2561930
邀请新用户注册赠送积分活动 1521455
关于科研通互助平台的介绍 1481513