A Graph-Based Information Fusion Approach for ADHD Subtype Classification

计算机科学 图形 人工智能 机器学习 理论计算机科学
作者
Wuliang Huang,Xinlong Jianga,Chenlong Gaoa,Teng Zhanga,Yunbing Xing,Yiqiang Chen,Yi Zheng,Jie Li
标识
DOI:10.1109/smartworld-uic-atc-scalcom-digitaltwin-pricomp-metaverse56740.2022.00112
摘要

Attention deficit hyperactivity disorder (ADHD) is a common childhood mental disorder that encompasses three subtypes. Classifying each subtype has practical significance. However, the gold standard for subtype diagnosis depends on face-to-face consultation with psychiatrists, which is limited by medical resources. This paper proposes a graph-based multimodal fusion approach to classify each subtype objectively, alleviating the pressure on psychiatrists. The proposed method leverages heterogeneous signals, including motion and speech, which are significant indicators of ADHD. We construct a personal graph where each child is a vertex, and the similarity of their personal information measures edges. Since the associations between subjects modeled by the personal graph provide rich prior knowledge, we regard the problem of subtype classification as predicting the labels of vertices on a graph. A novel graph neural network model is proposed to enable information passing between children, fusing motion and speech features under the guidance of the personal graph. We design a reading scenario and collect a multimodal dataset containing 56 children with ADHD and 50 typically developing children. Results of ADHD subtype classification demonstrate the practical value of the proposed approach. We also perform ablation studies to verify the validity of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨金城完成签到,获得积分10
刚刚
科研公主完成签到,获得积分10
刚刚
1秒前
2秒前
Jack80发布了新的文献求助30
2秒前
大模型应助危机的雪旋采纳,获得10
3秒前
Xavier发布了新的文献求助10
3秒前
从容的丹南完成签到 ,获得积分10
4秒前
zzz发布了新的文献求助10
4秒前
充电宝应助organicboy采纳,获得10
4秒前
4秒前
NexusExplorer应助岳红健采纳,获得10
4秒前
壮观砖家发布了新的文献求助20
6秒前
怕孤单应助个qwieid采纳,获得10
7秒前
7秒前
7秒前
Wang发布了新的文献求助30
7秒前
8秒前
Lynn怯霜静发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
jun发布了新的文献求助10
9秒前
晨雾关注了科研通微信公众号
10秒前
苏小狸完成签到,获得积分10
10秒前
10秒前
yaoli0823完成签到,获得积分10
10秒前
辛勤愚志完成签到 ,获得积分10
11秒前
11秒前
岳红健完成签到,获得积分10
11秒前
充电宝应助李浩然采纳,获得10
11秒前
11秒前
12秒前
12秒前
桐桐应助Reut_Hyu采纳,获得10
12秒前
wei发布了新的文献求助10
12秒前
14秒前
14秒前
15秒前
泡泡泡芙发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672