A Graph-Based Information Fusion Approach for ADHD Subtype Classification

计算机科学 图形 人工智能 机器学习 理论计算机科学
作者
Wuliang Huang,Xinlong Jianga,Chenlong Gaoa,Teng Zhanga,Yunbing Xing,Yiqiang Chen,Yi Zheng,Jie Li
标识
DOI:10.1109/smartworld-uic-atc-scalcom-digitaltwin-pricomp-metaverse56740.2022.00112
摘要

Attention deficit hyperactivity disorder (ADHD) is a common childhood mental disorder that encompasses three subtypes. Classifying each subtype has practical significance. However, the gold standard for subtype diagnosis depends on face-to-face consultation with psychiatrists, which is limited by medical resources. This paper proposes a graph-based multimodal fusion approach to classify each subtype objectively, alleviating the pressure on psychiatrists. The proposed method leverages heterogeneous signals, including motion and speech, which are significant indicators of ADHD. We construct a personal graph where each child is a vertex, and the similarity of their personal information measures edges. Since the associations between subjects modeled by the personal graph provide rich prior knowledge, we regard the problem of subtype classification as predicting the labels of vertices on a graph. A novel graph neural network model is proposed to enable information passing between children, fusing motion and speech features under the guidance of the personal graph. We design a reading scenario and collect a multimodal dataset containing 56 children with ADHD and 50 typically developing children. Results of ADHD subtype classification demonstrate the practical value of the proposed approach. We also perform ablation studies to verify the validity of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大豪子完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
orixero应助杨潇丶丶采纳,获得10
1秒前
1秒前
归尘发布了新的文献求助30
1秒前
丽莎发布了新的文献求助10
1秒前
伊伊完成签到,获得积分10
1秒前
suer完成签到 ,获得积分10
2秒前
vera发布了新的文献求助10
2秒前
2秒前
thi完成签到,获得积分10
2秒前
等下完这场雨完成签到,获得积分10
3秒前
科目三应助好好学习采纳,获得10
3秒前
zz桓桓发布了新的文献求助10
3秒前
粗暴的小土豆完成签到,获得积分10
3秒前
隐形曼青应助机灵水卉采纳,获得10
4秒前
刘鑫慧完成签到 ,获得积分10
4秒前
彭天乐完成签到,获得积分10
4秒前
4秒前
Nikki发布了新的文献求助20
4秒前
5秒前
larrry完成签到,获得积分20
5秒前
迷路雪珊发布了新的文献求助10
6秒前
VitoLi完成签到,获得积分10
6秒前
黄浩发布了新的文献求助10
6秒前
6秒前
14完成签到,获得积分10
6秒前
打打应助shell采纳,获得10
6秒前
6秒前
充电宝应助Sepvvvvirtue采纳,获得10
7秒前
单薄紫菱发布了新的文献求助10
7秒前
8秒前
清圆527完成签到,获得积分10
9秒前
mads发布了新的文献求助50
9秒前
丽莎完成签到,获得积分20
9秒前
落落洛栖完成签到 ,获得积分10
9秒前
lovt123发布了新的文献求助100
9秒前
10秒前
热情映天完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718472
求助须知:如何正确求助?哪些是违规求助? 5252894
关于积分的说明 15285900
捐赠科研通 4868646
什么是DOI,文献DOI怎么找? 2614347
邀请新用户注册赠送积分活动 1564180
关于科研通互助平台的介绍 1521729