Breast cancer pre-clinical screening using infrared thermography and artificial intelligence: a prospective, multicentre, diagnostic accuracy cohort study

医学 接收机工作特性 前瞻性队列研究 乳腺癌 乳腺摄影术 诊断准确性 人工智能 癌症 内科学 计算机科学
作者
Xuefei Wang,Kuo‐Chih Chou,Guochao Zhang,Zhichao Zuo,Ting Zhang,Yidong Zhou,Feng Mao,Yan Lin,Songjie Shen,Xiao-Hui Zhang,Xuejing Wang,Ying Zhong,Xue Qin,Hailin Guo,Xiaojie Wang,Yao Xiao,Qianchuan Yi,Cunli Yan,Jian Liu,Dongdong Li,Wei Liu,Mengwen Liu,Xiaoying Ma,Jiangtao Tao,Qiang Sun,Jidong Zhai,Likun Huang
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:109 (10): 3021-3031 被引量:1
标识
DOI:10.1097/js9.0000000000000594
摘要

Background: Given the limited access to breast cancer (BC) screening, the authors developed and validated a mobile phone-artificial intelligence-based infrared thermography (AI-IRT) system for BC screening. Materials and methods: This large prospective clinical trial assessed the diagnostic performance of the AI-IRT system. The authors constructed two datasets and two models, performed internal and external validation, and compared the diagnostic accuracy of the AI models and clinicians. Dataset A included 2100 patients recruited from 19 medical centres in nine regions of China. Dataset B was used for independent external validation and included 102 patients recruited from Langfang People’s Hospital. Results: The area under the receiver operating characteristic curve of the binary model for identifying low-risk and intermediate/high-risk patients was 0.9487 (95% CI: 0.9231–0.9744) internally and 0.9120 (95% CI: 0.8460–0.9790) externally. The accuracy of the binary model was higher than that of human readers (0.8627 vs. 0.8088, respectively). In addition, the binary model was better than the multinomial model and used different diagnostic thresholds based on BC risk to achieve specific goals. Conclusions: The accuracy of AI-IRT was high across populations with different demographic characteristics and less reliant on manual interpretations, demonstrating that this model can improve pre-clinical screening and increase screening rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxt完成签到,获得积分10
刚刚
清萍红檀完成签到,获得积分10
1秒前
vgdrg完成签到,获得积分10
2秒前
ya完成签到,获得积分10
3秒前
vgdrg发布了新的文献求助10
4秒前
6秒前
平常冬云完成签到,获得积分10
8秒前
8秒前
21发布了新的文献求助80
8秒前
迟早完成签到 ,获得积分10
9秒前
LZNL完成签到,获得积分10
9秒前
卷卷发布了新的文献求助10
10秒前
黄伊若发布了新的文献求助10
11秒前
感动秋完成签到 ,获得积分10
11秒前
and999发布了新的文献求助10
11秒前
善学以致用应助YY采纳,获得10
14秒前
Akim应助99668采纳,获得10
14秒前
kc135完成签到,获得积分10
19秒前
20秒前
美好蜻蜓完成签到 ,获得积分10
21秒前
歪石开通完成签到,获得积分20
21秒前
HaojunWang完成签到 ,获得积分10
23秒前
25秒前
26秒前
zsh完成签到,获得积分10
26秒前
1257应助啊超采纳,获得10
26秒前
27秒前
Orange应助自由的亦旋采纳,获得10
29秒前
nanyuan123发布了新的文献求助20
31秒前
31秒前
33秒前
35秒前
37秒前
生动的冷玉完成签到 ,获得积分10
37秒前
海海完成签到,获得积分10
38秒前
叶95完成签到,获得积分10
39秒前
JHY完成签到 ,获得积分10
39秒前
不配.应助and999采纳,获得10
40秒前
ajun完成签到,获得积分10
41秒前
hdn发布了新的文献求助30
41秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151831
求助须知:如何正确求助?哪些是违规求助? 2803210
关于积分的说明 7852429
捐赠科研通 2460582
什么是DOI,文献DOI怎么找? 1309902
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760