工作流程
医学
人工智能
心脏成像
机器学习
分割
图像处理
自动化
计算机科学
放射科
图像(数学)
机械工程
数据库
工程类
作者
Afolasayo A. Aromiwura,Tyler Settle,Muhammad Umer,Jonathan Joshi,Madhavi Kadiyala,Jishanth Mattumpuram,Mounica Vorla,Maryta Sztukowska,Sohail Contractor,Amir A. Amini,Dipak Kalra
标识
DOI:10.1016/j.pcad.2023.09.001
摘要
Artificial Intelligence (AI) is a broad discipline of computer science and engineering. Modern application of AI encompasses intelligent models and algorithms for automated data analysis and processing, data generation, and prediction with applications in visual perception, speech understanding, and language translation. AI in healthcare uses machine learning (ML) and other predictive analytical techniques to help sort through vast amounts of data and generate outputs that aid in diagnosis, clinical decision support, workflow automation, and prognostication. Coronary computed tomography angiography (CCTA) is an ideal union for these applications due to vast amounts of data generation and analysis during cardiac segmentation, coronary calcium scoring, plaque quantification, adipose tissue quantification, peri-operative planning, fractional flow reserve quantification, and cardiac event prediction. In the past 5 years, there has been an exponential increase in the number of studies exploring the use of AI for cardiac computed tomography (CT) image acquisition, de-noising, analysis, and prognosis. Beyond image processing, AI has also been applied to improve the imaging workflow in areas such as patient scheduling, urgent result notification, report generation, and report communication. In this review, we discuss algorithms applicable to AI and radiomic analysis; we then present a summary of current and emerging clinical applications of AI in cardiac CT. We conclude with AI's advantages and limitations in this new field.
科研通智能强力驱动
Strongly Powered by AbleSci AI