Degradation-Trend-Aware Deep Neural Network With Attention Mechanism for Bearing Remaining Useful Life Prediction

预言 判别式 稳健性(进化) 深度学习 人工智能 计算机科学 方位(导航) 人工神经网络 降级(电信) 机器学习 保险丝(电气) 数据挖掘 机制(生物学) 模式识别(心理学) 工程类 认识论 电气工程 基因 哲学 化学 电信 生物化学
作者
Yongkang Liu,Donghui Pan,Haifeng Zhang,Kai Zhong
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (6): 2997-3011 被引量:3
标识
DOI:10.1109/tai.2023.3333767
摘要

Remaining useful life (RUL) prediction of bearings has extraordinary significance for prognostics and health management (PHM) of rotating machinery. RUL prediction approaches based on deep learning have been dedicated to finding a nonlinear mapping relationship between non-stationary monitoring data and RUL. However, most existing approaches pay little attention to the degradation trend of diverse health stages of bearing and lack the discriminative power of crucial degradation features, resulting in the loss of some important information associated with RUL. To address this challenge, this article proposes a novel RUL prediction framework based on degradation-trend-aware deep neural network with attention mechanism (DTADAN). Firstly, the multi-direction features with evident degradation trend are extracted via the analysis of bearing vibration signal from both time domain and time-frequency domain. Next, the deep neural network architecture with attention mechanism is utilized to adaptively learn the critical degradation features beneficial for RUL prediction. Distinct from the existing approaches, the proposed framework is able to dynamically extract key degradation features of the bearing including degradation trend information and effectively fuse multi-direction information to improve RUL prediction accuracy. The performance of the proposed approach is evaluated via case studies on XJTU-SY bearing dataset and PRONOSTIA bearing dataset. Compared with other state-of-the-art approaches, the proposed framework has better predictive accuracy and robustness. Additionally, interpretable analysis is provided to reveal the process of model learning and data characteristics, and the analysis results are helpful in guiding model learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
简单酒窝发布了新的文献求助10
2秒前
研友_VZG7GZ应助sci喷涌而出采纳,获得10
2秒前
闪闪的白易完成签到,获得积分20
2秒前
靓丽的沁发布了新的文献求助10
3秒前
yyyyyyhui完成签到,获得积分10
3秒前
4秒前
Rational完成签到,获得积分10
4秒前
ycp完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
jenningseastera举报拼搏书竹求助涉嫌违规
5秒前
6秒前
123完成签到,获得积分20
7秒前
8秒前
堕落叔叔发布了新的文献求助10
8秒前
zxc1064v发布了新的文献求助10
10秒前
123发布了新的文献求助10
10秒前
11秒前
晚棠发布了新的文献求助10
11秒前
毛豆Y完成签到,获得积分10
12秒前
Ava应助安静曼寒采纳,获得10
12秒前
angel完成签到,获得积分10
12秒前
张杰发布了新的文献求助10
13秒前
CAOHOU举报Alvin求助涉嫌违规
13秒前
15秒前
王利完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
18秒前
Deiog完成签到,获得积分10
18秒前
沉默的谷秋完成签到,获得积分10
19秒前
秀丽的大门完成签到,获得积分20
19秒前
zinnn应助Edison采纳,获得10
20秒前
21秒前
21秒前
健壮熊猫发布了新的文献求助10
22秒前
Ava应助Dina采纳,获得10
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124469
捐赠科研通 3237323
什么是DOI,文献DOI怎么找? 1789046
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844